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1 Introduction

The motivation behind GiNaC derives from the observation that most present day computer
algebra systems (CAS) are linguistically and semantically impoverished. Although they are quite
powerful tools for learning math and solving particular problems they lack modern linguistic
structures that allow for the creation of large-scale projects. GiNaC is an attempt to overcome
this situation by extending a well established and standardized computer language (C++) by some
fundamental symbolic capabilities, thus allowing for integrated systems that embed symbolic
manipulations together with more established areas of computer science (like computation-intense
numeric applications, graphical interfaces, etc.) under one roof.

The particular problem that led to the writing of the GiNaC framework is still a very active field
of research, namely the calculation of higher order corrections to elementary particle interactions.
There, theoretical physicists are interested in matching present day theories against experiments
taking place at particle accelerators. The computations involved are so complex they call for a
combined symbolical and numerical approach. This turned out to be quite difficult to accomplish
with the present day CAS we have worked with so far and so we tried to fill the gap by writing
GiNaC. But of course its applications are in no way restricted to theoretical physics.

This tutorial is intended for the novice user who is new to GiNaC but already has some background
in C++ programming. However, since a hand-made documentation like this one is difficult to
keep in sync with the development, the actual documentation is inside the sources in the form of
comments. That documentation may be parsed by one of the many Javadoc-like documentation
systems. If you fail at generating it you may access it from the GiNaC home page (https://
www.ginac.de/reference/). It is an invaluable resource not only for the advanced user who
wishes to extend the system (or chase bugs) but for everybody who wants to comprehend the
inner workings of GiNaC. This little tutorial on the other hand only covers the basic things that
are unlikely to change in the near future.

1.1 License

The GiNaC framework for symbolic computation within the C++ programming language is
Copyright c© 1999-2023 Johannes Gutenberg University Mainz, Germany.

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Street,
Fifth Floor, Boston, MA 02110-1301, USA.

https://www.ginac.de/reference/
https://www.ginac.de/reference/
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2 A Tour of GiNaC

This quick tour of GiNaC wants to arise your interest in the subsequent chapters by showing off
a bit. Please excuse us if it leaves many open questions.

2.1 How to use it from within C++

The GiNaC open framework for symbolic computation within the C++ programming language
does not try to define a language of its own as conventional CAS do. Instead, it extends the
capabilities of C++ by symbolic manipulations. Here is how to generate and print a simple (and
rather pointless) bivariate polynomial with some large coefficients:

#include <iostream>

#include <ginac/ginac.h>

using namespace std;

using namespace GiNaC;

int main()

{

symbol x("x"), y("y");

ex poly;

for (int i=0; i<3; ++i)

poly += factorial(i+16)*pow(x,i)*pow(y,2-i);

cout << poly << endl;

return 0;

}

Assuming the file is called hello.cc, on our system we can compile and run it like this:

$ c++ hello.cc -o hello -lginac -lcln

$ ./hello

355687428096000*x*y+20922789888000*y^2+6402373705728000*x^2

(See Appendix B [Package tools], page 114, for tools that help you when creating a software
package that uses GiNaC.)

Next, there is a more meaningful C++ program that calls a function which generates Hermite
polynomials in a specified free variable.

#include <iostream>

#include <ginac/ginac.h>

using namespace std;

using namespace GiNaC;

ex HermitePoly(const symbol & x, int n)

{

ex HKer=exp(-pow(x, 2));

// uses the identity H_n(x) == (-1)^n exp(x^2) (d/dx)^n exp(-x^2)

return normal(pow(-1, n) * diff(HKer, x, n) / HKer);

}

int main()

{

symbol z("z");
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for (int i=0; i<6; ++i)

cout << "H_" << i << "(z) == " << HermitePoly(z,i) << endl;

return 0;

}

When run, this will type out

H_0(z) == 1

H_1(z) == 2*z

H_2(z) == 4*z^2-2

H_3(z) == -12*z+8*z^3

H_4(z) == -48*z^2+16*z^4+12

H_5(z) == 120*z-160*z^3+32*z^5

This method of generating the coefficients is of course far from optimal for production purposes.

In order to show some more examples of what GiNaC can do we will now use the ginsh, a simple
GiNaC interactive shell that provides a convenient window into GiNaC’s capabilities.

2.2 What it can do for you

After invoking ginsh one can test and experiment with GiNaC’s features much like in other
Computer Algebra Systems except that it does not provide programming constructs like loops
or conditionals. For a concise description of the ginsh syntax we refer to its accompanied man
page. Suffice to say that assignments and comparisons in ginsh are written as they are in C, i.e.
= assigns and == compares.

It can manipulate arbitrary precision integers in a very fast way. Rational numbers are automati-
cally converted to fractions of coprime integers:

> x=3^150;

369988485035126972924700782451696644186473100389722973815184405301748249

> y=3^149;

123329495011708990974900260817232214728824366796574324605061468433916083

> x/y;

3

> y/x;

1/3

Exact numbers are always retained as exact numbers and only evaluated as floating point numbers
if requested. For instance, with numeric radicals is dealt pretty much as with symbols. Products
of sums of them can be expanded:

> expand((1+a^(1/5)-a^(2/5))^3);

1+3*a+3*a^(1/5)-5*a^(3/5)-a^(6/5)

> expand((1+3^(1/5)-3^(2/5))^3);

10-5*3^(3/5)

> evalf((1+3^(1/5)-3^(2/5))^3);

0.33408977534118624228

The function evalf that was used above converts any number in GiNaC’s expressions into
floating point numbers. This can be done to arbitrary predefined accuracy:

> evalf(1/7);

0.14285714285714285714

> Digits=150;

150

> evalf(1/7);

0.1428571428571428571428571428571428571428571428571428571428571428571428
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5714285714285714285714285714285714285

Exact numbers other than rationals that can be manipulated in GiNaC include predefined
constants like Archimedes’ Pi. They can both be used in symbolic manipulations (as an exact
number) as well as in numeric expressions (as an inexact number):

> a=Pi^2+x;

x+Pi^2

> evalf(a);

9.869604401089358619+x

> x=2;

2

> evalf(a);

11.869604401089358619

Built-in functions evaluate immediately to exact numbers if this is possible. Conversions that can
be safely performed are done immediately; conversions that are not generally valid are not done:

> cos(42*Pi);

1

> cos(acos(x));

x

> acos(cos(x));

acos(cos(x))

(Note that converting the last input to x would allow one to conclude that 42*Pi is equal to 0.)

Linear equation systems can be solved along with basic linear algebra manipulations over symbolic
expressions. In C++ GiNaC offers a matrix class for this purpose but we can see what it can do
using ginsh’s bracket notation to type them in:

> lsolve(a+x*y==z,x);

y^(-1)*(z-a);

> lsolve({3*x+5*y == 7, -2*x+10*y == -5}, {x, y});

{x==19/8,y==-1/40}

> M = [ [1, 3], [-3, 2] ];

[[1,3],[-3,2]]

> determinant(M);

11

> charpoly(M,lambda);

lambda^2-3*lambda+11

> A = [ [1, 1], [2, -1] ];

[[1,1],[2,-1]]

> A+2*M;

[[1,1],[2,-1]]+2*[[1,3],[-3,2]]

> evalm(%);

[[3,7],[-4,3]]

> B = [ [0, 0, a], [b, 1, -b], [-1/a, 0, 0] ];

> evalm(B^(2^12345));

[[1,0,0],[0,1,0],[0,0,1]]

Multivariate polynomials and rational functions may be expanded, collected, factorized, and
normalized (i.e. converted to a ratio of two coprime polynomials):

> a = x^4 + 2*x^2*y^2 + 4*x^3*y + 12*x*y^3 - 3*y^4;

12*x*y^3+2*x^2*y^2+4*x^3*y-3*y^4+x^4

> b = x^2 + 4*x*y - y^2;

4*x*y-y^2+x^2

> expand(a*b);
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8*x^5*y+17*x^4*y^2+43*x^2*y^4-24*x*y^5+16*x^3*y^3+3*y^6+x^6

> factor(%);

(4*x*y+x^2-y^2)^2*(x^2+3*y^2)

> collect(a+b,x);

4*x^3*y-y^2-3*y^4+(12*y^3+4*y)*x+x^4+x^2*(1+2*y^2)

> collect(a+b,y);

12*x*y^3-3*y^4+(-1+2*x^2)*y^2+(4*x+4*x^3)*y+x^2+x^4

> normal(a/b);

3*y^2+x^2

Here we have made use of the ginsh-command % to pop the previously evaluated element from
ginsh’s internal stack.

You can differentiate functions and expand them as Taylor or Laurent series in a very natural
syntax (the second argument of series is a relation defining the evaluation point, the third
specifies the order):

> diff(tan(x),x);

tan(x)^2+1

> series(sin(x),x==0,4);

x-1/6*x^3+Order(x^4)

> series(1/tan(x),x==0,4);

x^(-1)-1/3*x+Order(x^2)

> series(tgamma(x),x==0,3);

x^(-1)-Euler+(1/12*Pi^2+1/2*Euler^2)*x+

(-1/3*zeta(3)-1/12*Pi^2*Euler-1/6*Euler^3)*x^2+Order(x^3)

> evalf(%);

x^(-1)-0.5772156649015328606+(0.9890559953279725555)*x

-(0.90747907608088628905)*x^2+Order(x^3)

> series(tgamma(2*sin(x)-2),x==Pi/2,6);

-(x-1/2*Pi)^(-2)+(-1/12*Pi^2-1/2*Euler^2-1/240)*(x-1/2*Pi)^2

-Euler-1/12+Order((x-1/2*Pi)^3)

Often, functions don’t have roots in closed form. Nevertheless, it’s quite easy to compute a
solution numerically, to arbitrary precision:

> Digits=50:

> fsolve(cos(x)==x,x,0,2);

0.7390851332151606416553120876738734040134117589007574649658

> f=exp(sin(x))-x:

> X=fsolve(f,x,-10,10);

2.2191071489137460325957851882042901681753665565320678854155

> subs(f,x==X);

-6.372367644529809108115521591070847222364418220770475144296E-58

Notice how the final result above differs slightly from zero by about 6 ∗ 10(− 58). This is because
with 50 decimal digits precision the root cannot be represented more accurately than X. Such
inaccuracies are to be expected when computing with finite floating point values.

If you ever wanted to convert units in C or C++ and found this is cumbersome, here is the
solution. Symbolic types can always be used as tags for different types of objects. Converting
from wrong units to the metric system is now easy:

> in=.0254*m;

0.0254*m

> lb=.45359237*kg;

0.45359237*kg

> 200*lb/in^2;
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140613.91592783185568*kg*m^(-2)



7

3 Installation

GiNaC’s installation follows the spirit of most GNU software. It is easily installed on your system
by three steps: configuration, build, installation.

3.1 Prerequisites

In order to install GiNaC on your system, some prerequisites need to be met. First of all,
you need to have a C++-compiler adhering to the ISO standard ISO/IEC 14882:2011(E). We
used GCC for development so if you have a different compiler you are on your own. For the
configuration to succeed you need a Posix compliant shell installed in /bin/sh, GNU bash is
fine. The pkg-config utility is required for the configuration, it can be downloaded from http://

pkg-config.freedesktop.org. Last but not least, the CLN library is used extensively and
needs to be installed on your system. Please get it from https://www.ginac.de/CLN/ (it is
licensed under the GPL) and install it prior to trying to install GiNaC. The configure script
checks if it can find it and if it cannot, it will refuse to continue.

3.2 Configuration

To configure GiNaC means to prepare the source distribution for building. It is done via a shell
script called configure that is shipped with the sources and was originally generated by GNU
Autoconf. Since a configure script generated by GNU Autoconf never prompts, all customization
must be done either via command line parameters or environment variables. It accepts a list of
parameters, the complete set of which can be listed by calling it with the --help option. The
most important ones will be shortly described in what follows:

• --disable-shared: When given, this option switches off the build of a shared library, i.e.
a .so file. This may be convenient when developing because it considerably speeds up
compilation.

• --prefix=PREFIX: The directory where the compiled library and headers are installed.
It defaults to /usr/local which means that the library is installed in the directory
/usr/local/lib, the header files in /usr/local/include/ginac and the documentation
(like this one) into /usr/local/share/doc/GiNaC.

• --libdir=LIBDIR: Use this option in case you want to have the library installed in some
other directory than PREFIX/lib/.

• --includedir=INCLUDEDIR: Use this option in case you want to have the header files
installed in some other directory than PREFIX/include/ginac/. For instance, if you specify
--includedir=/usr/include you will end up with the header files sitting in the directory
/usr/include/ginac/. Note that the subdirectory ginac is enforced by this process in
order to keep the header files separated from others. This avoids some clashes and allows
for an easier deinstallation of GiNaC. This ought to be considered A Good Thing (tm).

• --datadir=DATADIR: This option may be given in case you want to have the documentation
installed in some other directory than PREFIX/share/doc/GiNaC/.

In addition, you may specify some environment variables. CXX holds the path and the name of
the C++ compiler in case you want to override the default in your path. (The configure script
searches your path for c++, g++, gcc, CC, cxx and cc++ in that order.) It may be very useful to
define some compiler flags with the CXXFLAGS environment variable, like optimization, debugging
information and warning levels. If omitted, it defaults to -g -O2.1

1 The configure script is itself generated from the file configure.ac. It is only distributed in packaged releases
of GiNaC. If you got the naked sources, e.g. from git, you must generate configure along with the various
Makefile.in by using the autoreconf utility. This will require a fair amount of support from your local toolchain,
though.

http://pkg-config.freedesktop.org
http://pkg-config.freedesktop.org
https://www.ginac.de/CLN/
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The whole process is illustrated in the following two examples. (Substitute setenv VARIABLE

value for export VARIABLE=value if the Berkeley C shell is your login shell.)

Here is a simple configuration for a site-wide GiNaC library assuming everything is in default
paths:

$ export CXXFLAGS="-Wall -O2"

$ ./configure

And here is a configuration for a private static GiNaC library with several components sitting in
custom places (site-wide GCC and private CLN). The compiler is persuaded to be picky and full
assertions and debugging information are switched on:

$ export CXX=/usr/local/gnu/bin/c++

$ export CPPFLAGS="$(CPPFLAGS) -I$(HOME)/include"

$ export CXXFLAGS="$(CXXFLAGS) -DDO_GINAC_ASSERT -ggdb -Wall -pedantic"

$ export LDFLAGS="$(LDFLAGS) -L$(HOME)/lib"

$ ./configure --disable-shared --prefix=$(HOME)

3.3 Building GiNaC

After proper configuration you should just build the whole library by typing

$ make

at the command prompt and go for a cup of coffee. The exact time it takes to compile GiNaC
depends not only on the speed of your machines but also on other parameters, for instance what
value for CXXFLAGS you entered. Optimization may be very time-consuming.

Just to make sure GiNaC works properly you may run a collection of regression tests by typing

$ make check

This will compile some sample programs, run them and check the output for correctness. The
regression tests fall in three categories. First, the so called exams are performed, simple tests
where some predefined input is evaluated (like a pupils’ exam). Second, the checks test the
coherence of results among each other with possible random input. Third, some timings are
performed, which benchmark some predefined problems with different sizes and display the CPU
time used in seconds. Each individual test should return a message ‘passed’. This is mostly
intended to be a QA-check if something was broken during development, not a sanity check
of your system. Some of the tests in sections checks and timings may require insane amounts
of memory and CPU time. Feel free to kill them if your machine catches fire. Another quite
important intent is to allow people to fiddle around with optimization.

By default, the only documentation that will be built is this tutorial in .info format. To build
the GiNaC tutorial and reference manual in HTML, DVI, PostScript, or PDF formats, use one of

$ make html

$ make dvi

$ make ps

$ make pdf

Generally, the top-level Makefile runs recursively to the subdirectories. It is therefore safe to go
into any subdirectory (doc/, ginsh/, . . . ) and simply type make target there in case something
went wrong.

3.4 Installing GiNaC

To install GiNaC on your system, simply type

$ make install
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As described in the section about configuration the files will be installed in the following directories
(the directories will be created if they don’t already exist):

• libginac.a will go into PREFIX/lib/ (or LIBDIR) which defaults to /usr/local/lib/. So
will libginac.so unless the configure script was given the option --disable-shared. The
proper symlinks will be established as well.

• All the header files will be installed into PREFIX/include/ginac/ (or INCLUDEDIR/ginac/,
if specified).

• All documentation (info) will be stuffed into PREFIX/share/doc/GiNaC/ (or
DATADIR/doc/GiNaC/, if DATADIR was specified).

For the sake of completeness we will list some other useful make targets: make clean deletes
all files generated by make, i.e. all the object files. In addition make distclean removes all files
generated by the configuration and make maintainer-clean goes one step further and deletes
files that may require special tools to rebuild (like the libtool for instance). Finally make

uninstall removes the installed library, header files and documentation2.

2 Uninstallation does not work after you have called make distclean since the Makefile is itself generated by the
configuration from Makefile.in and hence deleted by make distclean. There are two obvious ways out of this
dilemma. First, you can run the configuration again with the same PREFIX thus creating a Makefile with a
working ‘uninstall’ target. Second, you can do it by hand since you now know where all the files went during
installation.
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4 Basic concepts

This chapter will describe the different fundamental objects that can be handled by GiNaC. But
before doing so, it is worthwhile introducing you to the more commonly used class of expressions,
representing a flexible meta-class for storing all mathematical objects.

4.1 Expressions

The most common class of objects a user deals with is the expression ex, representing a
mathematical object like a variable, number, function, sum, product, etc. . . Expressions may be
put together to form new expressions, passed as arguments to functions, and so on. Here is a
little collection of valid expressions:

ex MyEx1 = 5; // simple number

ex MyEx2 = x + 2*y; // polynomial in x and y

ex MyEx3 = (x + 1)/(x - 1); // rational expression

ex MyEx4 = sin(x + 2*y) + 3*z + 41; // containing a function

ex MyEx5 = MyEx4 + 1; // similar to above

Expressions are handles to other more fundamental objects, that often contain other expressions
thus creating a tree of expressions (See Appendix A [Internal structures], page 111, for particular
examples). Most methods on ex therefore run top-down through such an expression tree. For
example, the method has() scans recursively for occurrences of something inside an expression.
Thus, if you have declared MyEx4 as in the example above MyEx4.has(y) will find y inside the
argument of sin and hence return true.

The next sections will outline the general picture of GiNaC’s class hierarchy and describe the
classes of objects that are handled by ex.

4.1.1 Note: Expressions and STL containers

GiNaC expressions (ex objects) have value semantics (they can be assigned, reassigned and
copied like integral types) but the operator < doesn’t provide a well-defined ordering on them.
In STL-speak, expressions are ‘Assignable’ but not ‘LessThanComparable’.

This implies that in order to use expressions in sorted containers such as std::map<> and
std::set<> you have to supply a suitable comparison predicate. GiNaC provides such a predicate,
called ex_is_less. For example, a set of expressions should be defined as std::set<ex, ex_

is_less>.

Unsorted containers such as std::vector<> and std::list<> don’t pose a problem. A
std::vector<ex> works as expected.

See Section 5.1 [Information about expressions], page 48, for more about comparing and ordering
expressions.

4.2 Automatic evaluation and canonicalization of expressions

GiNaC performs some automatic transformations on expressions, to simplify them and put them
into a canonical form. Some examples:

ex MyEx1 = 2*x - 1 + x; // 3*x-1

ex MyEx2 = x - x; // 0

ex MyEx3 = cos(2*Pi); // 1

ex MyEx4 = x*y/x; // y

This behavior is usually referred to as automatic or anonymous evaluation. GiNaC only performs
transformations that are

• at most of complexity O(n log n)
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• algebraically correct, possibly except for a set of measure zero (e.g. x/x is transformed to 1
although this is incorrect for x = 0)

There are two types of automatic transformations in GiNaC that may not behave in an entirely
obvious way at first glance:

• The terms of sums and products (and some other things like the arguments of symmetric
functions, the indices of symmetric tensors etc.) are re-ordered into a canonical form that is
deterministic, but not lexicographical or in any other way easy to guess (it almost always
depends on the number and order of the symbols you define). However, constructing the
same expression twice, either implicitly or explicitly, will always result in the same canonical
form.

• Expressions of the form ’number times sum’ are automatically expanded (this has to do
with GiNaC’s internal representation of sums and products). For example

ex MyEx5 = 2*(x + y); // 2*x+2*y

ex MyEx6 = z*(x + y); // z*(x+y)

The general rule is that when you construct expressions, GiNaC automatically creates them in
canonical form, which might differ from the form you typed in your program. This may create
some awkward looking output (‘-y+x’ instead of ‘x-y’) but allows for more efficient operation
and usually yields some immediate simplifications.

Internally, the anonymous evaluator in GiNaC is implemented by the methods

ex ex::eval() const;

ex basic::eval() const;

but unless you are extending GiNaC with your own classes or functions, there should never be
any reason to call them explicitly. All GiNaC methods that transform expressions, like subs()
or normal(), automatically re-evaluate their results.

4.3 Error handling

GiNaC reports run-time errors by throwing C++ exceptions. All exceptions generated by GiNaC
are subclassed from the standard exception class defined in the <stdexcept> header. In addition
to the predefined logic_error, domain_error, out_of_range, invalid_argument, runtime_
error, range_error and overflow_error types, GiNaC also defines a pole_error exception
that gets thrown when trying to evaluate a mathematical function at a singularity.

The pole_error class has a member function

int pole_error::degree() const;

that returns the order of the singularity (or 0 when the pole is logarithmic or the order is
undefined).

When using GiNaC it is useful to arrange for exceptions to be caught in the main program even
if you don’t want to do any special error handling. Otherwise whenever an error occurs in GiNaC,
it will be delegated to the default exception handler of your C++ compiler’s run-time system
which usually only aborts the program without giving any information what went wrong.

Here is an example for a main() function that catches and prints exceptions generated by GiNaC:

#include <iostream>

#include <stdexcept>

#include <ginac/ginac.h>

using namespace std;

using namespace GiNaC;

int main()

{
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try {

...

// code using GiNaC

...

} catch (exception &p) {

cerr << p.what() << endl;

return 1;

}

return 0;

}

4.4 The class hierarchy

GiNaC’s class hierarchy consists of several classes representing mathematical objects, all of which
(except for ex and some helpers) are internally derived from one abstract base class called basic.
You do not have to deal with objects of class basic, instead you’ll be dealing with symbols,
numbers, containers of expressions and so on.

To get an idea about what kinds of symbolic composites may be built we have a look at the most
important classes in the class hierarchy and some of the relations among the classes:
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... ...

The abstract classes shown here (the ones without drop-shadow) are of no interest for the user.
They are used internally in order to avoid code duplication if two or more classes derived from
them share certain features. An example is expairseq, a container for a sequence of pairs each
consisting of one expression and a number (numeric). What is visible to the user are the derived
classes add and mul, representing sums and products. See Appendix A [Internal structures],
page 111, where these two classes are described in more detail. The following table shortly
summarizes what kinds of mathematical objects are stored in the different classes:
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� �
symbol Algebraic symbols a, x, y . . .
constant Constants like π
numeric All kinds of numbers, 42, 7/3 ∗ I, 3.14159. . .
add Sums like x+ y or a− (2 ∗ b) + 3
mul Products like x ∗ y or 2 ∗ a2 ∗ (x+ y + z)/b
ncmul Products of non-commutative objects

power Exponentials such as x2, ab,
√
2 . . .

pseries Power Series, e.g. x− 1/6 ∗ x3 + 1/120 ∗ x5 +O(x7)
function A symbolic function like sin 2x
lst Lists of expressions {x, 2 ∗ y, 3 + z}
matrix mxn matrices of expressions
relational A relation like the identity x==y
indexed Indexed object like Aij
tensor Special tensor like the delta and metric tensors
idx Index of an indexed object
varidx Index with variance
spinidx Index with variance and dot (used in Weyl-van-der-Waerden spinor

formalism)

wildcard Wildcard for pattern matching
structure Template for user-defined classes
 	
4.5 Symbols

Symbolic indeterminates, or symbols for short, are for symbolic manipulation what atoms are for
chemistry.

A typical symbol definition looks like this:

symbol x("x");

This definition actually contains three very different things:

• a C++ variable named x

• a symbol object stored in this C++ variable; this object represents the symbol in a GiNaC
expression

• the string "x" which is the name of the symbol, used (almost) exclusively for printing
expressions holding the symbol

Symbols have an explicit name, supplied as a string during construction, because in C++, variable
names can’t be used as values, and the C++ compiler throws them away during compilation.

It is possible to omit the symbol name in the definition:

symbol x;

In this case, GiNaC will assign the symbol an internal, unique name of the form symbolNNN.
This won’t affect the usability of the symbol but the output of your calculations will become
more readable if you give your symbols sensible names (for intermediate expressions that are
only used internally such anonymous symbols can be quite useful, however).

Now, here is one important property of GiNaC that differentiates it from other computer algebra
programs you may have used: GiNaC does not use the names of symbols to tell them apart, but
a (hidden) serial number that is unique for each newly created symbol object. If you want to use
one and the same symbol in different places in your program, you must only create one symbol
object and pass that around. If you create another symbol, even if it has the same name, GiNaC
will treat it as a different indeterminate.
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Observe:

ex f(int n)

{

symbol x("x");

return pow(x, n);

}

int main()

{

symbol x("x");

ex e = f(6);

cout << e << endl;

// prints "x^6" which looks right, but...

cout << e.degree(x) << endl;

// ...this doesn’t work. The symbol "x" here is different from the one

// in f() and in the expression returned by f(). Consequently, it

// prints "0".

}

One possibility to ensure that f() and main() use the same symbol is to pass the symbol as an
argument to f():

ex f(int n, const ex & x)

{

return pow(x, n);

}

int main()

{

symbol x("x");

// Now, f() uses the same symbol.

ex e = f(6, x);

cout << e.degree(x) << endl;

// prints "6", as expected

}

Another possibility would be to define a global symbol x that is used by both f() and main(). If
you are using global symbols and multiple compilation units you must take special care, however.
Suppose that you have a header file globals.h in your program that defines a symbol x("x");.
In this case, every unit that includes globals.h would also get its own definition of x (because
header files are just inlined into the source code by the C++ preprocessor), and hence you would
again end up with multiple equally-named, but different, symbols. Instead, the globals.h header
should only contain a declaration like extern symbol x;, with the definition of x moved into a
C++ source file such as globals.cpp.

A different approach to ensuring that symbols used in different parts of your program are identical
is to create them with a factory function like this one:

const symbol & get_symbol(const string & s)

{

static map<string, symbol> directory;
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map<string, symbol>::iterator i = directory.find(s);

if (i != directory.end())

return i->second;

else

return directory.insert(make_pair(s, symbol(s))).first->second;

}

This function returns one newly constructed symbol for each name that is passed in, and it
returns the same symbol when called multiple times with the same name. Using this symbol
factory, we can rewrite our example like this:

ex f(int n)

{

return pow(get_symbol("x"), n);

}

int main()

{

ex e = f(6);

// Both calls of get_symbol("x") yield the same symbol.

cout << e.degree(get_symbol("x")) << endl;

// prints "6"

}

Instead of creating symbols from strings we could also have get_symbol() take, for example,
an integer number as its argument. In this case, we would probably want to give the generated
symbols names that include this number, which can be accomplished with the help of an
ostringstream.

In general, if you’re getting weird results from GiNaC such as an expression ‘x-x’ that is not
simplified to zero, you should check your symbol definitions.

As we said, the names of symbols primarily serve for purposes of expression output. But there are
actually two instances where GiNaC uses the names for identifying symbols: When constructing
an expression from a string, and when recreating an expression from an archive (see Section 5.15
[Input/output], page 80).

In addition to its name, a symbol may contain a special string that is used in LaTeX output:

symbol x("x", "\\Box");

This creates a symbol that is printed as "x" in normal output, but as "\Box" in LaTeX code (See
Section 5.15 [Input/output], page 80, for more information about the different output formats
of expressions in GiNaC). GiNaC automatically creates proper LaTeX code for symbols having
names of greek letters (‘alpha’, ‘mu’, etc.). You can retrieve the name and the LaTeX name of a
symbol using the respective methods:

symbol::get_name() const;

symbol::get_TeX_name() const;

Symbols in GiNaC can’t be assigned values. If you need to store results of calculations and give
them a name, use C++ variables of type ex. If you want to replace a symbol in an expression with
something else, you can invoke the expression’s .subs() method (see Section 5.3 [Substituting
expressions], page 53).

By default, symbols are expected to stand in for complex values, i.e. they live in the complex do-
main. As a consequence, operations like complex conjugation, for example (see Section 5.13 [Com-
plex expressions], page 79), do not evaluate if applied to such symbols. Likewise log(exp(x))

does not evaluate to x, because of the unknown imaginary part of x. On the other hand, if you
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are sure that your symbols will hold only real values, you would like to have such functions
evaluated. Therefore GiNaC allows you to specify the domain of the symbol. Instead of symbol
x("x"); you can write realsymbol x("x"); to tell GiNaC that x stands in for real values.

Furthermore, it is also possible to declare a symbol as positive. This will, for instance, enable the
automatic simplification of abs(x) into x. This is done by declaring the symbol as possymbol
x("x");.

4.6 Numbers

For storing numerical things, GiNaC uses Bruno Haible’s library CLN. The classes therein serve
as foundation classes for GiNaC. CLN stands for Class Library for Numbers or alternatively
for Common Lisp Numbers. In order to find out more about CLN’s internals, the reader is
referred to the documentation of that library. See The CLN Manual, for more information.
Suffice to say that it is by itself build on top of another library, the GNU Multiple Precision
library GMP, which is an extremely fast library for arbitrary long integers and rationals as
well as arbitrary precision floating point numbers. It is very commonly used by several popular
cryptographic applications. CLN extends GMP by several useful things: First, it introduces
the complex number field over either reals (i.e. floating point numbers with arbitrary precision)
or rationals. Second, it automatically converts rationals to integers if the denominator is unity
and complex numbers to real numbers if the imaginary part vanishes and also correctly treats
algebraic functions. Third it provides good implementations of state-of-the-art algorithms for all
trigonometric and hyperbolic functions as well as for calculation of some useful constants.

The user can construct an object of class numeric in several ways. The following example
shows the four most important constructors. It uses construction from C-integer, construction of
fractions from two integers, construction from C-float and construction from a string:

#include <iostream>

#include <ginac/ginac.h>

using namespace GiNaC;

int main()

{

numeric two = 2; // exact integer 2

numeric r(2,3); // exact fraction 2/3

numeric e(2.71828); // floating point number

numeric p = "3.14159265358979323846"; // constructor from string

// Trott’s constant in scientific notation:

numeric trott("1.0841015122311136151E-2");

std::cout << two*p << std::endl; // floating point 6.283...

...

The imaginary unit in GiNaC is a predefined numeric object with the name I:

...

numeric z1 = 2-3*I; // exact complex number 2-3i

numeric z2 = 5.9+1.6*I; // complex floating point number

}

It may be tempting to construct fractions by writing numeric r(3/2). This would, however, call
C’s built-in operator / for integers first and result in a numeric holding a plain integer 1. Never
use the operator / on integers unless you know exactly what you are doing! Use the constructor
from two integers instead, as shown in the example above. Writing numeric(1)/2 may look
funny but works also.
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We have seen now the distinction between exact numbers and floating point numbers. Clearly, the
user should never have to worry about dynamically created exact numbers, since their ‘exactness’
always determines how they ought to be handled, i.e. how ‘long’ they are. The situation is
different for floating point numbers. Their accuracy is controlled by one global variable, called
Digits. (For those readers who know about Maple: it behaves very much like Maple’s Digits).
All objects of class numeric that are constructed from then on will be stored with a precision
matching that number of decimal digits:

#include <iostream>

#include <ginac/ginac.h>

using namespace std;

using namespace GiNaC;

void foo()

{

numeric three(3.0), one(1.0);

numeric x = one/three;

cout << "in " << Digits << " digits:" << endl;

cout << x << endl;

cout << Pi.evalf() << endl;

}

int main()

{

foo();

Digits = 60;

foo();

return 0;

}

The above example prints the following output to screen:

in 17 digits:

0.33333333333333333334

3.1415926535897932385

in 60 digits:

0.33333333333333333333333333333333333333333333333333333333333333333334

3.1415926535897932384626433832795028841971693993751058209749445923078

Note that the last number is not necessarily rounded as you would naively expect it to be rounded
in the decimal system. But note also, that in both cases you got a couple of extra digits. This is
because numbers are internally stored by CLN as chunks of binary digits in order to match your
machine’s word size and to not waste precision. Thus, on architectures with different word size,
the above output might even differ with regard to actually computed digits.

It should be clear that objects of class numeric should be used for constructing numbers or for
doing arithmetic with them. The objects one deals with most of the time are the polymorphic
expressions ex.

4.6.1 Tests on numbers

Once you have declared some numbers, assigned them to expressions and done some arithmetic
with them it is frequently desired to retrieve some kind of information from them like asking
whether that number is integer, rational, real or complex. For those cases GiNaC provides several
useful methods. (Internally, they fall back to invocations of certain CLN functions.)
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As an example, let’s construct some rational number, multiply it with some multiple of its
denominator and test what comes out:

#include <iostream>

#include <ginac/ginac.h>

using namespace std;

using namespace GiNaC;

// some very important constants:

const numeric twentyone(21);

const numeric ten(10);

const numeric five(5);

int main()

{

numeric answer = twentyone;

answer /= five;

cout << answer.is_integer() << endl; // false, it’s 21/5

answer *= ten;

cout << answer.is_integer() << endl; // true, it’s 42 now!

}

Note that the variable answer is constructed here as an integer by numeric’s copy constructor,
but in an intermediate step it holds a rational number represented as integer numerator and
integer denominator. When multiplied by 10, the denominator becomes unity and the result is
automatically converted to a pure integer again. Internally, the underlying CLN is responsible
for this behavior and we refer the reader to CLN’s documentation. Suffice to say that the same
behavior applies to complex numbers as well as return values of certain functions. Complex
numbers are automatically converted to real numbers if the imaginary part becomes zero. The
full set of tests that can be applied is listed in the following table.� �
Method Returns true if the object is. . .
.is_zero() . . . equal to zero
.is_positive() . . .not complex and greater than 0
.is_negative() . . .not complex and smaller than 0
.is_integer() . . . a (non-complex) integer
.is_pos_integer() . . . an integer and greater than 0
.is_nonneg_integer() . . . an integer and greater equal 0
.is_even() . . . an even integer
.is_odd() . . . an odd integer
.is_prime() . . . a prime integer (probabilistic primality test)
.is_rational() . . . an exact rational number (integers are rational, too)
.is_real() . . . a real integer, rational or float (i.e. is not complex)
.is_cinteger() . . . a (complex) integer (such as 2− 3 ∗ I)
.is_crational() . . . an exact (complex) rational number (such as 2/3 + 7/2 ∗ I)
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4.6.2 Numeric functions

The following functions can be applied to numeric objects and will be evaluated immediately:
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� �
Name Function
inverse(z) returns 1/z
pow(a, b) exponentiation ab

abs(z) absolute value
real(z) real part
imag(z) imaginary part
csgn(z) complex sign (returns an int)
step(x) step function (returns an numeric)
numer(z) numerator of rational or complex rational number
denom(z) denominator of rational or complex rational number
sqrt(z) square root
isqrt(n) integer square root
sin(z) sine
cos(z) cosine
tan(z) tangent
asin(z) inverse sine
acos(z) inverse cosine
atan(z) inverse tangent
atan(y, x) inverse tangent with two arguments
sinh(z) hyperbolic sine
cosh(z) hyperbolic cosine
tanh(z) hyperbolic tangent
asinh(z) inverse hyperbolic sine
acosh(z) inverse hyperbolic cosine
atanh(z) inverse hyperbolic tangent
exp(z) exponential function
log(z) natural logarithm
Li2(z) dilogarithm
zeta(z) Riemann’s zeta function
tgamma(z) gamma function
lgamma(z) logarithm of gamma function
psi(z) psi (digamma) function
psi(n, z) derivatives of psi function (polygamma functions)
factorial(n) factorial function n!
doublefactorial(n) double factorial function n!!
binomial(n, k) binomial coefficients
bernoulli(n) Bernoulli numbers
fibonacci(n) Fibonacci numbers
mod(a, b) modulus in positive representation (in the range [0, abs(b)-1]

with the sign of b, or zero)

smod(a, b) modulus in symmetric representation (in the range
[-iquo(abs(b), 2), iquo(abs(b), 2)])

irem(a, b) integer remainder (has the sign of a, or is zero)
irem(a, b, q) integer remainder and quotient, irem(a, b, q) == a-q*b

iquo(a, b) integer quotient
iquo(a, b, r) integer quotient and remainder, r == a-iquo(a, b)*b

gcd(a, b) greatest common divisor
lcm(a, b) least common multiple
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Most of these functions are also available as symbolic functions that can be used in expressions
(see Section 4.10 [Mathematical functions], page 24) or, like gcd(), as polynomial algorithms.

4.6.3 Converting numbers

Sometimes it is desirable to convert a numeric object back to a built-in arithmetic type (int,
double, etc.). The numeric class provides a couple of methods for this purpose:

int numeric::to_int() const;

long numeric::to_long() const;

double numeric::to_double() const;

cln::cl_N numeric::to_cl_N() const;

to_int() and to_long() only work when the number they are applied on is an exact integer.
Otherwise the program will halt with a message like ‘Not a 32-bit integer’. to_double()

applied on a rational number will return a floating-point approximation. Both to_int()/to_

long() and to_double() discard the imaginary part of complex numbers.

Note the signature of the above methods, you may need to apply a type conversion and call
evalf() as shown in the following example:

...

ex e1 = 1, e2 = sin(Pi/5);

cout << ex_to<numeric>(e1).to_int() << endl

<< ex_to<numeric>(e2.evalf()).to_double() << endl;

...

4.7 Constants

Constants behave pretty much like symbols except that they return some specific number when
the method .evalf() is called.

The predefined known constants are:� �
Name Common Name Numerical Value (to 35 digits)
Pi Archimedes’ constant 3.14159265358979323846264338327950288
Catalan Catalan’s constant 0.91596559417721901505460351493238411
Euler Euler’s (or Euler-

Mascheroni) constant
0.57721566490153286060651209008240243


 	
4.8 Sums, products and powers

Simple rational expressions are written down in GiNaC pretty much like in other CAS or like
expressions involving numerical variables in C. The necessary operators +, -, * and / have been
overloaded to achieve this goal. When you run the following code snippet, the constructor for an
object of type mul is automatically called to hold the product of a and b and then the constructor
for an object of type add is called to hold the sum of that mul object and the number one:

...

symbol a("a"), b("b");

ex MyTerm = 1+a*b;

...

For exponentiation, you have already seen the somewhat clumsy (though C-ish) statement
pow(x,2); to represent x squared. This direct construction is necessary since we cannot safely
overload the constructor ^ in C++ to construct a power object. If we did, it would have several
counterintuitive and undesired effects:

• Due to C’s operator precedence, 2*x^2 would be parsed as (2*x)^2.
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• Due to the binding of the operator ^, x^a^b would result in (x^a)^b. This would be
confusing since most (though not all) other CAS interpret this as x^(a^b).

• Also, expressions involving integer exponents are very frequently used, which makes it even
more dangerous to overload ^ since it is then hard to distinguish between the semantics as
exponentiation and the one for exclusive or. (It would be embarrassing to return 1 where
one has requested 2^3.)

All effects are contrary to mathematical notation and differ from the way most other CAS handle
exponentiation, therefore overloading ^ is ruled out for GiNaC’s C++ part. The situation is
different in ginsh, there the exponentiation-^ exists. (Also note that the other frequently used
exponentiation operator ** does not exist at all in C++).

To be somewhat more precise, objects of the three classes described here, are all containers for
other expressions. An object of class power is best viewed as a container with two slots, one for
the basis, one for the exponent. All valid GiNaC expressions can be inserted. However, basic
transformations like simplifying pow(pow(x,2),3) to x^6 automatically are only performed when
this is mathematically possible. If we replace the outer exponent three in the example by some
symbols a, the simplification is not safe and will not be performed, since a might be 1/2 and x

negative.

Objects of type add and mul are containers with an arbitrary number of slots for expressions to
be inserted. Again, simple and safe simplifications are carried out like transforming 3*x+4-x to
2*x+4.

4.9 Lists of expressions

The GiNaC class lst serves for holding a list of arbitrary expressions. They are not as ubiquitous
as in many other computer algebra packages, but are sometimes used to supply a variable number
of arguments of the same type to GiNaC methods such as subs() and some matrix constructors,
so you should have a basic understanding of them.

Lists can be constructed from an initializer list of expressions:

{

symbol x("x"), y("y");

lst l = {x, 2, y, x+y};

// now, l is a list holding the expressions ’x’, ’2’, ’y’, and ’x+y’,

// in that order

...

Use the nops() method to determine the size (number of expressions) of a list and the op()

method or the [] operator to access individual elements:

...

cout << l.nops() << endl; // prints ’4’

cout << l.op(2) << " " << l[0] << endl; // prints ’y x’

...

As with the standard list<T> container, accessing random elements of a lst is generally an
operation of order O(N). Faster read-only sequential access to the elements of a list is possible
with the iterator types provided by the lst class:

typedef ... lst::const_iterator;

typedef ... lst::const_reverse_iterator;

lst::const_iterator lst::begin() const;

lst::const_iterator lst::end() const;

lst::const_reverse_iterator lst::rbegin() const;

lst::const_reverse_iterator lst::rend() const;
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For example, to print the elements of a list individually you can use:

...

// O(N)

for (lst::const_iterator i = l.begin(); i != l.end(); ++i)

cout << *i << endl;

...

which is one order faster than

...

// O(N^2)

for (size_t i = 0; i < l.nops(); ++i)

cout << l.op(i) << endl;

...

These iterators also allow you to use some of the algorithms provided by the C++ standard
library:

...

// print the elements of the list (requires #include <iterator>)

std::copy(l.begin(), l.end(), ostream_iterator<ex>(cout, "\n"));

// sum up the elements of the list (requires #include <numeric>)

ex sum = std::accumulate(l.begin(), l.end(), ex(0));

cout << sum << endl; // prints ’2+2*x+2*y’

...

lst is one of the few GiNaC classes that allow in-place modifications (the only other one is
matrix). You can modify single elements:

...

l[1] = 42; // l is now {x, 42, y, x+y}

l.let_op(1) = 7; // l is now {x, 7, y, x+y}

...

You can append or prepend an expression to a list with the append() and prepend() methods:

...

l.append(4*x); // l is now {x, 7, y, x+y, 4*x}

l.prepend(0); // l is now {0, x, 7, y, x+y, 4*x}

...

You can remove the first or last element of a list with remove_first() and remove_last():

...

l.remove_first(); // l is now {x, 7, y, x+y, 4*x}

l.remove_last(); // l is now {x, 7, y, x+y}

...

You can remove all the elements of a list with remove_all():

...

l.remove_all(); // l is now empty

...

You can bring the elements of a list into a canonical order with sort():

...

lst l1 = {x, 2, y, x+y};

lst l2 = {2, x+y, x, y};

l1.sort();

l2.sort();
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// l1 and l2 are now equal

...

Finally, you can remove all but the first element of consecutive groups of elements with unique():

...

lst l3 = {x, 2, 2, 2, y, x+y, y+x};

l3.unique(); // l3 is now {x, 2, y, x+y}

}

4.10 Mathematical functions

There are quite a number of useful functions hard-wired into GiNaC. For instance, all trigonometric
and hyperbolic functions are implemented (See Section 5.12 [Built-in functions], page 74, for a
complete list).

These functions (better called pseudofunctions) are all objects of class function. They accept
one or more expressions as arguments and return one expression. If the arguments are not
numerical, the evaluation of the function may be halted, as it does in the next example, showing
how a function returns itself twice and finally an expression that may be really useful:

...

symbol x("x"), y("y");

ex foo = x+y/2;

cout << tgamma(foo) << endl;

// -> tgamma(x+(1/2)*y)

ex bar = foo.subs(y==1);

cout << tgamma(bar) << endl;

// -> tgamma(x+1/2)

ex foobar = bar.subs(x==7);

cout << tgamma(foobar) << endl;

// -> (135135/128)*Pi^(1/2)

...

Besides evaluation most of these functions allow differentiation, series expansion and so on. Read
the next chapter in order to learn more about this.

It must be noted that these pseudofunctions are created by inline functions, where the argu-
ment list is templated. This means that whenever you call GiNaC::sin(1) it is equivalent
to sin(ex(1)) and will therefore not result in a floating point number. Unless of course the
function prototype is explicitly overridden – which is the case for arguments of type numeric

(not wrapped inside an ex). Hence, in order to obtain a floating point number of class numeric
you should call sin(numeric(1)). This is almost the same as calling sin(1).evalf() except
that the latter will return a numeric wrapped inside an ex.

4.11 Relations

Sometimes, a relation holding between two expressions must be stored somehow. The class
relational is a convenient container for such purposes. A relation is by definition a container
for two ex and a relation between them that signals equality, inequality and so on. They are
created by simply using the C++ operators ==, !=, <, <=, > and >= between two expressions.

See Section 4.10 [Mathematical functions], page 24, for examples where various applications of
the .subs() method show how objects of class relational are used as arguments. There they
provide an intuitive syntax for substitutions. They are also used as arguments to the ex::series
method, where the left hand side of the relation specifies the variable to expand in and the right
hand side the expansion point. They can also be used for creating systems of equations that are
to be solved for unknown variables.
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But the most common usage of objects of this class is rather inconspicuous in statements of
the form if (expand(pow(a+b,2))==a*a+2*a*b+b*b) {...}. Here, an implicit conversion from
relational to bool takes place. Note, however, that == here does not perform any simplifications,
hence expand() must be called explicitly.

Simplifications of relationals may be more efficient if preceded by a call to

ex relational::canonical() const

which returns an equivalent relation with the zero right-hand side. For example:

possymbol p("p");

relational rel = (p >= (p*p-1)/p);

if (ex_to<relational>(rel.canonical().normal()))

cout << "correct inequality" << endl;

However, a user shall not expect that any inequality can be fully resolved by GiNaC.

4.12 Integrals

An object of class integral can be used to hold a symbolic integral. If you want to symbolically
represent the integral of x*x from 0 to 1, you would write this as

integral(x, 0, 1, x*x)

The first argument is the integration variable. It should be noted that GiNaC is not very good
(yet?) at symbolically evaluating integrals. In fact, it can only integrate polynomials. An
expression containing integrals can be evaluated symbolically by calling the

.eval_integ()

method on it. Numerical evaluation is available by calling the

.evalf()

method on an expression containing the integral. This will only evaluate integrals into a number
if subsing the integration variable by a number in the fourth argument of an integral and then
evalfing the result always results in a number. Of course, also the boundaries of the integration
domain must evalf into numbers. It should be noted that trying to evalf a function with
discontinuities in the integration domain is not recommended. The accuracy of the numeric
evaluation of integrals is determined by the static member variable

ex integral::relative_integration_error

of the class integral. The default value of this is 10^-8. The integration works by halving the
interval of integration, until numeric stability of the answer indicates that the requested accuracy
has been reached. The maximum depth of the halving can be set via the static member variable

int integral::max_integration_level

The default value is 15. If this depth is exceeded, evalf will simply return the integral unevaluated.
The function that performs the numerical evaluation, is also available as

ex adaptivesimpson(const ex & x, const ex & a, const ex & b, const ex & f,

const ex & error)

This function will throw an exception if the maximum depth is exceeded. The last parameter of
the function is optional and defaults to the relative_integration_error. To make sure that
we do not do too much work if an expression contains the same integral multiple times, a lookup
table is used.

If you know that an expression holds an integral, you can get the integration variable, the left
boundary, right boundary and integrand by respectively calling .op(0), .op(1), .op(2), and
.op(3). Differentiating integrals with respect to variables works as expected. Note that it makes
no sense to differentiate an integral with respect to the integration variable.
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4.13 Matrices

A matrix is a two-dimensional array of expressions. The elements of a matrix with m rows and
n columns are accessed with two unsigned indices, the first one in the range 0. . .m − 1, the
second one in the range 0. . .n− 1.

There are a couple of ways to construct matrices, with or without preset elements. The constructor

matrix::matrix(unsigned r, unsigned c);

creates a matrix with ‘r’ rows and ‘c’ columns with all elements set to zero.

The easiest way to create a matrix is using an initializer list of initializer lists, all of the same
size:

{

matrix m = {{1, -a},

{a, 1}};

}

You can also specify the elements as a (flat) list with

matrix::matrix(unsigned r, unsigned c, const lst & l);

The function

ex lst_to_matrix(const lst & l);

constructs a matrix from a list of lists, each list representing a matrix row.

There is also a set of functions for creating some special types of matrices:

ex diag_matrix(const lst & l);

ex diag_matrix(initializer_list<ex> l);

ex unit_matrix(unsigned x);

ex unit_matrix(unsigned r, unsigned c);

ex symbolic_matrix(unsigned r, unsigned c, const string & base_name);

ex symbolic_matrix(unsigned r, unsigned c, const string & base_name,

const string & tex_base_name);

diag_matrix() constructs a square diagonal matrix given the diagonal elements. unit_matrix()
creates an ‘x’ by ‘x’ (or ‘r’ by ‘c’) unit matrix. And finally, symbolic_matrix constructs a
matrix filled with newly generated symbols made of the specified base name and the position of
each element in the matrix.

Matrices often arise by omitting elements of another matrix. For instance, the submatrix S of a
matrix M takes a rectangular block from M. The reduced matrix R is defined by removing one row
and one column from a matrix M. (The determinant of a reduced matrix is called a Minor of M
and can be used for computing the inverse using Cramer’s rule.)

ex sub_matrix(const matrix&m, unsigned r, unsigned nr, unsigned c, unsigned nc);

ex reduced_matrix(const matrix& m, unsigned r, unsigned c);

The function sub_matrix() takes a row offset r and a column offset c and takes a block of nr
rows and nc columns. The function reduced_matrix() has two integer arguments that specify
which row and column to remove:

{

matrix m = {{11, 12, 13},

{21, 22, 23},

{31, 32, 33}};

cout << reduced_matrix(m, 1, 1) << endl;

// -> [[11,13],[31,33]]

cout << sub_matrix(m, 1, 2, 1, 2) << endl;

// -> [[22,23],[32,33]]

}
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Matrix elements can be accessed and set using the parenthesis (function call) operator:

const ex & matrix::operator()(unsigned r, unsigned c) const;

ex & matrix::operator()(unsigned r, unsigned c);

It is also possible to access the matrix elements in a linear fashion with the op() method. But
C++-style subscripting with square brackets ‘[]’ is not available.

Here are a couple of examples for constructing matrices:

{

symbol a("a"), b("b");

matrix M = {{a, 0},

{0, b}};

cout << M << endl;

// -> [[a,0],[0,b]]

matrix M2(2, 2);

M2(0, 0) = a;

M2(1, 1) = b;

cout << M2 << endl;

// -> [[a,0],[0,b]]

cout << matrix(2, 2, lst{a, 0, 0, b}) << endl;

// -> [[a,0],[0,b]]

cout << lst_to_matrix(lst{lst{a, 0}, lst{0, b}}) << endl;

// -> [[a,0],[0,b]]

cout << diag_matrix(lst{a, b}) << endl;

// -> [[a,0],[0,b]]

cout << unit_matrix(3) << endl;

// -> [[1,0,0],[0,1,0],[0,0,1]]

cout << symbolic_matrix(2, 3, "x") << endl;

// -> [[x00,x01,x02],[x10,x11,x12]]

}

The method matrix::is_zero_matrix() returns true only if all entries of the matrix are zeros.
There is also method ex::is_zero_matrix() which returns true only if the expression is zero
or a zero matrix.

There are three ways to do arithmetic with matrices. The first (and most direct one) is to use
the methods provided by the matrix class:

matrix matrix::add(const matrix & other) const;

matrix matrix::sub(const matrix & other) const;

matrix matrix::mul(const matrix & other) const;

matrix matrix::mul_scalar(const ex & other) const;

matrix matrix::pow(const ex & expn) const;

matrix matrix::transpose() const;

All of these methods return the result as a new matrix object. Here is an example that calculates
A ∗B − 2 ∗ C for three matrices A, B and C:

{

matrix A = {{ 1, 2},



Chapter 4: Basic concepts 28

{ 3, 4}};

matrix B = {{-1, 0},

{ 2, 1}};

matrix C = {{ 8, 4},

{ 2, 1}};

matrix result = A.mul(B).sub(C.mul_scalar(2));

cout << result << endl;

// -> [[-13,-6],[1,2]]

...

}

The second (and probably the most natural) way is to construct an expression containing matrices
with the usual arithmetic operators and pow(). For efficiency reasons, expressions with sums,
products and powers of matrices are not automatically evaluated in GiNaC. You have to call the
method

ex ex::evalm() const;

to obtain the result:

{

...

ex e = A*B - 2*C;

cout << e << endl;

// -> [[1,2],[3,4]]*[[-1,0],[2,1]]-2*[[8,4],[2,1]]

cout << e.evalm() << endl;

// -> [[-13,-6],[1,2]]

...

}

The non-commutativity of the product A*B in this example is automatically recognized by GiNaC.
There is no need to use a special operator here. See Section 4.15 [Non-commutative objects],
page 39, for more information about dealing with non-commutative expressions.

Finally, you can work with indexed matrices and call simplify_indexed() to perform the
arithmetic:

{

...

idx i(symbol("i"), 2), j(symbol("j"), 2), k(symbol("k"), 2);

e = indexed(A, i, k) * indexed(B, k, j) - 2 * indexed(C, i, j);

cout << e << endl;

// -> -2*[[8,4],[2,1]].i.j+[[-1,0],[2,1]].k.j*[[1,2],[3,4]].i.k

cout << e.simplify_indexed() << endl;

// -> [[-13,-6],[1,2]].i.j

}

Using indices is most useful when working with rectangular matrices and one-dimensional vectors
because you don’t have to worry about having to transpose matrices before multiplying them.
See Section 4.14 [Indexed objects], page 29, for more information about using matrices with
indices, and about indices in general.

The matrix class provides a couple of additional methods for computing determinants, traces,
characteristic polynomials and ranks:

ex matrix::determinant(unsigned algo=determinant_algo::automatic) const;

ex matrix::trace() const;

ex matrix::charpoly(const ex & lambda) const;

unsigned matrix::rank(unsigned algo=solve_algo::automatic) const;
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The optional ‘algo’ argument of determinant() and rank() functions allows to select between
different algorithms for calculating the determinant and rank respectively. The asymptotic speed
(as parametrized by the matrix size) can greatly differ between those algorithms, depending on
the nature of the matrix’ entries. The possible values are defined in the flags.h header file.
By default, GiNaC uses a heuristic to automatically select an algorithm that is likely (but not
guaranteed) to give the result most quickly.

Linear systems can be solved with:

matrix matrix::solve(const matrix & vars, const matrix & rhs,

unsigned algo=solve_algo::automatic) const;

Assuming the matrix object this method is applied on is an m times n matrix, then vars must be
a n times p matrix of symbolic indeterminates and rhs a m times p matrix. The returned matrix
then has dimension n times p and in the case of an underdetermined system will still contain
some of the indeterminates from vars. If the system is overdetermined, an exception is thrown.

To invert a matrix, use the method:

matrix matrix::inverse(unsigned algo=solve_algo::automatic) const;

The ‘algo’ argument is optional. If given, it must be one of solve_algo defined in flags.h.

4.14 Indexed objects

GiNaC allows you to handle expressions containing general indexed objects in arbitrary spaces.
It is also able to canonicalize and simplify such expressions and perform symbolic dummy index
summations. There are a number of predefined indexed objects provided, like delta and metric
tensors.

There are few restrictions placed on indexed objects and their indices and it is easy to construct
nonsense expressions, but our intention is to provide a general framework that allows you to
implement algorithms with indexed quantities, getting in the way as little as possible.

4.14.1 Indexed quantities and their indices

Indexed expressions in GiNaC are constructed of two special types of objects, index objects and
indexed objects.

• Index objects are of class idx or a subclass. Every index has a value and a dimension (which
is the dimension of the space the index lives in) which can both be arbitrary expressions
but are usually a number or a simple symbol. In addition, indices of class varidx have a
variance (they can be co- or contravariant), and indices of class spinidx have a variance
and can be dotted or undotted.

• Indexed objects are of class indexed or a subclass. They contain a base expression (which
is the expression being indexed), and one or more indices.

Please notice: when printing expressions, covariant indices and indices without variance are
denoted ‘.i’ while contravariant indices are denoted ‘~i’. Dotted indices have a ‘*’ in front of
the index value. In the following, we are going to use that notation in the text so instead of Ai

jk
we will write ‘A~i.j.k’. Index dimensions are not visible in the output.

A simple example shall illustrate the concepts:

#include <iostream>

#include <ginac/ginac.h>

using namespace std;

using namespace GiNaC;

int main()

{
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symbol i_sym("i"), j_sym("j");

idx i(i_sym, 3), j(j_sym, 3);

symbol A("A");

cout << indexed(A, i, j) << endl;

// -> A.i.j

cout << index_dimensions << indexed(A, i, j) << endl;

// -> A.i[3].j[3]

cout << dflt; // reset cout to default output format (dimensions hidden)

...

The idx constructor takes two arguments, the index value and the index dimension. First we
define two index objects, i and j, both with the numeric dimension 3. The value of the index
i is the symbol i_sym (which prints as ‘i’) and the value of the index j is the symbol j_sym
(which prints as ‘j’). Next we construct an expression containing one indexed object, ‘A.i.j’. It
has the symbol A as its base expression and the two indices i and j.

The dimensions of indices are normally not visible in the output, but one can request them to be
printed with the index_dimensions manipulator, as shown above.

Note the difference between the indices i and j which are of class idx, and the index values
which are the symbols i_sym and j_sym. The indices of indexed objects cannot directly be
symbols or numbers but must be index objects. For example, the following is not correct and
will raise an exception:

symbol i("i"), j("j");

e = indexed(A, i, j); // ERROR: indices must be of type idx

You can have multiple indexed objects in an expression, index values can be numeric, and index
dimensions symbolic:

...

symbol B("B"), dim("dim");

cout << 4 * indexed(A, i)

+ indexed(B, idx(j_sym, 4), idx(2, 3), idx(i_sym, dim)) << endl;

// -> B.j.2.i+4*A.i

...

B has a 4-dimensional symbolic index ‘k’, a 3-dimensional numeric index of value 2, and a symbolic
index ‘i’ with the symbolic dimension ‘dim’. Note that GiNaC doesn’t automatically notify you
that the free indices of ‘A’ and ‘B’ in the sum don’t match (you have to call simplify_indexed()
for that, see below).

In fact, base expressions, index values and index dimensions can be arbitrary expressions:

...

cout << indexed(A+B, idx(2*i_sym+1, dim/2)) << endl;

// -> (B+A).(1+2*i)

...

It’s also possible to construct nonsense like ‘Pi.sin(x)’. You will not get an error message from
this but you will probably not be able to do anything useful with it.

The methods

ex idx::get_value();

ex idx::get_dim();

return the value and dimension of an idx object. If you have an index in an expression, such as
returned by calling .op() on an indexed object, you can get a reference to the idx object with
the function ex_to<idx>() on the expression.
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There are also the methods

bool idx::is_numeric();

bool idx::is_symbolic();

bool idx::is_dim_numeric();

bool idx::is_dim_symbolic();

for checking whether the value and dimension are numeric or symbolic (non-numeric). Using the
info() method of an index (see Section 5.1 [Information about expressions], page 48) returns
information about the index value.

If you need co- and contravariant indices, use the varidx class:

...

symbol mu_sym("mu"), nu_sym("nu");

varidx mu(mu_sym, 4), nu(nu_sym, 4); // default is contravariant ~mu, ~nu

varidx mu_co(mu_sym, 4, true); // covariant index .mu

cout << indexed(A, mu, nu) << endl;

// -> A~mu~nu

cout << indexed(A, mu_co, nu) << endl;

// -> A.mu~nu

cout << indexed(A, mu.toggle_variance(), nu) << endl;

// -> A.mu~nu

...

A varidx is an idx with an additional flag that marks it as co- or contravariant. The default is
a contravariant (upper) index, but this can be overridden by supplying a third argument to the
varidx constructor. The two methods

bool varidx::is_covariant();

bool varidx::is_contravariant();

allow you to check the variance of a varidx object (use ex_to<varidx>() to get the object
reference from an expression). There’s also the very useful method

ex varidx::toggle_variance();

which makes a new index with the same value and dimension but the opposite variance. By
using it you only have to define the index once.

The spinidx class provides dotted and undotted variant indices, as used in the Weyl-van-der-
Waerden spinor formalism:

...

symbol K("K"), C_sym("C"), D_sym("D");

spinidx C(C_sym, 2), D(D_sym); // default is 2-dimensional,

// contravariant, undotted

spinidx C_co(C_sym, 2, true); // covariant index

spinidx D_dot(D_sym, 2, false, true); // contravariant, dotted

spinidx D_co_dot(D_sym, 2, true, true); // covariant, dotted

cout << indexed(K, C, D) << endl;

// -> K~C~D

cout << indexed(K, C_co, D_dot) << endl;

// -> K.C~*D

cout << indexed(K, D_co_dot, D) << endl;

// -> K.*D~D

...
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A spinidx is a varidx with an additional flag that marks it as dotted or undotted. The default is
undotted but this can be overridden by supplying a fourth argument to the spinidx constructor.
The two methods

bool spinidx::is_dotted();

bool spinidx::is_undotted();

allow you to check whether or not a spinidx object is dotted (use ex_to<spinidx>() to get the
object reference from an expression). Finally, the two methods

ex spinidx::toggle_dot();

ex spinidx::toggle_variance_dot();

create a new index with the same value and dimension but opposite dottedness and the same or
opposite variance.

4.14.2 Substituting indices

Sometimes you will want to substitute one symbolic index with another symbolic or numeric
index, for example when calculating one specific element of a tensor expression. This is done
with the .subs() method, as it is done for symbols (see Section 5.3 [Substituting expressions],
page 53).

You have two possibilities here. You can either substitute the whole index by another index or
expression:

...

ex e = indexed(A, mu_co);

cout << e << " becomes " << e.subs(mu_co == nu) << endl;

// -> A.mu becomes A~nu

cout << e << " becomes " << e.subs(mu_co == varidx(0, 4)) << endl;

// -> A.mu becomes A~0

cout << e << " becomes " << e.subs(mu_co == 0) << endl;

// -> A.mu becomes A.0

...

The third example shows that trying to replace an index with something that is not an index
will substitute the index value instead.

Alternatively, you can substitute the symbol of a symbolic index by another expression:

...

ex e = indexed(A, mu_co);

cout << e << " becomes " << e.subs(mu_sym == nu_sym) << endl;

// -> A.mu becomes A.nu

cout << e << " becomes " << e.subs(mu_sym == 0) << endl;

// -> A.mu becomes A.0

...

As you see, with the second method only the value of the index will get substituted. Its other
properties, including its dimension, remain unchanged. If you want to change the dimension of
an index you have to substitute the whole index by another one with the new dimension.

Finally, substituting the base expression of an indexed object works as expected:

...

ex e = indexed(A, mu_co);

cout << e << " becomes " << e.subs(A == A+B) << endl;

// -> A.mu becomes (B+A).mu

...
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4.14.3 Symmetries

Indexed objects can have certain symmetry properties with respect to their indices. Symmetries
are specified as a tree of objects of class symmetry that is constructed with the helper functions

symmetry sy_none(...);

symmetry sy_symm(...);

symmetry sy_anti(...);

symmetry sy_cycl(...);

sy_none() stands for no symmetry, sy_symm() and sy_anti() specify fully symmetric or
antisymmetric, respectively, and sy_cycl() represents a cyclic symmetry. Each of these functions
accepts up to four arguments which can be either symmetry objects themselves or unsigned
integer numbers that represent an index position (counting from 0). A symmetry specification
that consists of only a single sy_symm(), sy_anti() or sy_cycl() with no arguments specifies
the respective symmetry for all indices.

Here are some examples of symmetry definitions:

...

// No symmetry:

e = indexed(A, i, j);

e = indexed(A, sy_none(), i, j); // equivalent

e = indexed(A, sy_none(0, 1), i, j); // equivalent

// Symmetric in all three indices:

e = indexed(A, sy_symm(), i, j, k);

e = indexed(A, sy_symm(0, 1, 2), i, j, k); // equivalent

e = indexed(A, sy_symm(2, 0, 1), i, j, k); // same symmetry, but yields a

// different canonical order

// Symmetric in the first two indices only:

e = indexed(A, sy_symm(0, 1), i, j, k);

e = indexed(A, sy_none(sy_symm(0, 1), 2), i, j, k); // equivalent

// Antisymmetric in the first and last index only (index ranges need not

// be contiguous):

e = indexed(A, sy_anti(0, 2), i, j, k);

e = indexed(A, sy_none(sy_anti(0, 2), 1), i, j, k); // equivalent

// An example of a mixed symmetry: antisymmetric in the first two and

// last two indices, symmetric when swapping the first and last index

// pairs (like the Riemann curvature tensor):

e = indexed(A, sy_symm(sy_anti(0, 1), sy_anti(2, 3)), i, j, k, l);

// Cyclic symmetry in all three indices:

e = indexed(A, sy_cycl(), i, j, k);

e = indexed(A, sy_cycl(0, 1, 2), i, j, k); // equivalent

// The following examples are invalid constructions that will throw

// an exception at run time.

// An index may not appear multiple times:

e = indexed(A, sy_symm(0, 0, 1), i, j, k); // ERROR

e = indexed(A, sy_none(sy_symm(0, 1), sy_anti(0, 2)), i, j, k); // ERROR
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// Every child of sy_symm(), sy_anti() and sy_cycl() must refer to the

// same number of indices:

e = indexed(A, sy_symm(sy_anti(0, 1), 2), i, j, k); // ERROR

// And of course, you cannot specify indices which are not there:

e = indexed(A, sy_symm(0, 1, 2, 3), i, j, k); // ERROR

...

If you need to specify more than four indices, you have to use the .add() method of the symmetry
class. For example, to specify full symmetry in the first six indices you would write sy_symm(0,
1, 2, 3).add(4).add(5).

If an indexed object has a symmetry, GiNaC will automatically bring the indices into a canonical
order which allows for some immediate simplifications:

...

cout << indexed(A, sy_symm(), i, j)

+ indexed(A, sy_symm(), j, i) << endl;

// -> 2*A.j.i

cout << indexed(B, sy_anti(), i, j)

+ indexed(B, sy_anti(), j, i) << endl;

// -> 0

cout << indexed(B, sy_anti(), i, j, k)

- indexed(B, sy_anti(), j, k, i) << endl;

// -> 0

...

4.14.4 Dummy indices

GiNaC treats certain symbolic index pairs as dummy indices meaning that a summation over
the index range is implied. Symbolic indices which are not dummy indices are called free indices.
Numeric indices are neither dummy nor free indices.

To be recognized as a dummy index pair, the two indices must be of the same class and their
value must be the same single symbol (an index like ‘2*n+1’ is never a dummy index). If the
indices are of class varidx they must also be of opposite variance; if they are of class spinidx
they must be both dotted or both undotted.

The method .get_free_indices() returns a vector containing the free indices of an expression.
It also checks that the free indices of the terms of a sum are consistent:

{

symbol A("A"), B("B"), C("C");

symbol i_sym("i"), j_sym("j"), k_sym("k"), l_sym("l");

idx i(i_sym, 3), j(j_sym, 3), k(k_sym, 3), l(l_sym, 3);

ex e = indexed(A, i, j) * indexed(B, j, k) + indexed(C, k, l, i, l);

cout << exprseq(e.get_free_indices()) << endl;

// -> (.i,.k)

// ’j’ and ’l’ are dummy indices

symbol mu_sym("mu"), nu_sym("nu"), rho_sym("rho"), sigma_sym("sigma");

varidx mu(mu_sym, 4), nu(nu_sym, 4), rho(rho_sym, 4), sigma(sigma_sym, 4);

e = indexed(A, mu, nu) * indexed(B, nu.toggle_variance(), rho)

+ indexed(C, mu, sigma, rho, sigma.toggle_variance());
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cout << exprseq(e.get_free_indices()) << endl;

// -> (~mu,~rho)

// ’nu’ is a dummy index, but ’sigma’ is not

e = indexed(A, mu, mu);

cout << exprseq(e.get_free_indices()) << endl;

// -> (~mu)

// ’mu’ is not a dummy index because it appears twice with the same

// variance

e = indexed(A, mu, nu) + 42;

cout << exprseq(e.get_free_indices()) << endl; // ERROR

// this will throw an exception:

// "add::get_free_indices: inconsistent indices in sum"

}

A dummy index summation like aib
i can be expanded for indices with numeric dimensions (e.g.

3) into the explicit sum like a1b
1 + a2b

2 + a3b
3. This is performed by the function

ex expand_dummy_sum(const ex & e, bool subs_idx = false);

which takes an expression e and returns the expanded sum for all dummy indices with numeric
dimensions. If the parameter subs_idx is set to true then all substitutions are made by
idx class indices, i.e. without variance. In this case the above sum aib

i will be expanded to
a1b1 + a2b2 + a3b3.

4.14.5 Simplifying indexed expressions

In addition to the few automatic simplifications that GiNaC performs on indexed expressions
(such as re-ordering the indices of symmetric tensors and calculating traces and convolutions of
matrices and predefined tensors) there is the method

ex ex::simplify_indexed();

ex ex::simplify_indexed(const scalar_products & sp);

that performs some more expensive operations:

• it checks the consistency of free indices in sums in the same way get_free_indices() does

• it tries to give dummy indices that appear in different terms of a sum the same name to
allow simplifications like ai ∗ bi − aj ∗ bj = 0

• it (symbolically) calculates all possible dummy index summations/contractions with the
predefined tensors (this will be explained in more detail in the next section)

• it detects contractions that vanish for symmetry reasons, for example the contraction of a
symmetric and a totally antisymmetric tensor

• as a special case of dummy index summation, it can replace scalar products of two tensors
with a user-defined value

The last point is done with the help of the scalar_products class which is used to store scalar
products with known values (this is not an arithmetic class, you just pass it to simplify_

indexed()):

{

symbol A("A"), B("B"), C("C"), i_sym("i");

idx i(i_sym, 3);

scalar_products sp;

sp.add(A, B, 0); // A and B are orthogonal

sp.add(A, C, 0); // A and C are orthogonal
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sp.add(A, A, 4); // A^2 = 4 (A has length 2)

e = indexed(A + B, i) * indexed(A + C, i);

cout << e << endl;

// -> (B+A).i*(A+C).i

cout << e.expand(expand_options::expand_indexed).simplify_indexed(sp)

<< endl;

// -> 4+C.i*B.i

}

The scalar_products object sp acts as a storage for the scalar products added to it with the
.add() method. This method takes three arguments: the two expressions of which the scalar
product is taken, and the expression to replace it with.

The example above also illustrates a feature of the expand() method: if passed the expand_

indexed option it will distribute indices over sums, so ‘(A+B).i’ becomes ‘A.i+B.i’.

4.14.6 Predefined tensors

Some frequently used special tensors such as the delta, epsilon and metric tensors are predefined
in GiNaC. They have special properties when contracted with other tensor expressions and some
of them have constant matrix representations (they will evaluate to a number when numeric
indices are specified).

4.14.6.1 Delta tensor

The delta tensor takes two indices, is symmetric and has the matrix representation diag(1, 1,

1, ...). It is constructed by the function delta_tensor():

{

symbol A("A"), B("B");

idx i(symbol("i"), 3), j(symbol("j"), 3),

k(symbol("k"), 3), l(symbol("l"), 3);

ex e = indexed(A, i, j) * indexed(B, k, l)

* delta_tensor(i, k) * delta_tensor(j, l);

cout << e.simplify_indexed() << endl;

// -> B.i.j*A.i.j

cout << delta_tensor(i, i) << endl;

// -> 3

}

4.14.6.2 General metric tensor

The function metric_tensor() creates a general symmetric metric tensor with two indices that
can be used to raise/lower tensor indices. The metric tensor is denoted as ‘g’ in the output and
if its indices are of mixed variance it is automatically replaced by a delta tensor:

{

symbol A("A");

varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4), rho(symbol("rho"), 4);

ex e = metric_tensor(mu, nu) * indexed(A, nu.toggle_variance(), rho);

cout << e.simplify_indexed() << endl;
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// -> A~mu~rho

e = delta_tensor(mu, nu.toggle_variance()) * metric_tensor(nu, rho);

cout << e.simplify_indexed() << endl;

// -> g~mu~rho

e = metric_tensor(mu.toggle_variance(), nu.toggle_variance())

* metric_tensor(nu, rho);

cout << e.simplify_indexed() << endl;

// -> delta.mu~rho

e = metric_tensor(nu.toggle_variance(), rho.toggle_variance())

* metric_tensor(mu, nu) * (delta_tensor(mu.toggle_variance(), rho)

+ indexed(A, mu.toggle_variance(), rho));

cout << e.simplify_indexed() << endl;

// -> 4+A.rho~rho

}

4.14.6.3 Minkowski metric tensor

The Minkowski metric tensor is a special metric tensor with a constant matrix representation
which is either diag(1, -1, -1, ...) (negative signature, the default) or diag(-1, 1, 1, ...)

(positive signature). It is created with the function lorentz_g() (although it is output as ‘eta’):

{

varidx mu(symbol("mu"), 4);

e = delta_tensor(varidx(0, 4), mu.toggle_variance())

* lorentz_g(mu, varidx(0, 4)); // negative signature

cout << e.simplify_indexed() << endl;

// -> 1

e = delta_tensor(varidx(0, 4), mu.toggle_variance())

* lorentz_g(mu, varidx(0, 4), true); // positive signature

cout << e.simplify_indexed() << endl;

// -> -1

}

4.14.6.4 Spinor metric tensor

The function spinor_metric() creates an antisymmetric tensor with two indices that is used to
raise/lower indices of 2-component spinors. It is output as ‘eps’:

{

symbol psi("psi");

spinidx A(symbol("A")), B(symbol("B")), C(symbol("C"));

ex A_co = A.toggle_variance(), B_co = B.toggle_variance();

e = spinor_metric(A, B) * indexed(psi, B_co);

cout << e.simplify_indexed() << endl;

// -> psi~A

e = spinor_metric(A, B) * indexed(psi, A_co);

cout << e.simplify_indexed() << endl;



Chapter 4: Basic concepts 38

// -> -psi~B

e = spinor_metric(A_co, B_co) * indexed(psi, B);

cout << e.simplify_indexed() << endl;

// -> -psi.A

e = spinor_metric(A_co, B_co) * indexed(psi, A);

cout << e.simplify_indexed() << endl;

// -> psi.B

e = spinor_metric(A_co, B_co) * spinor_metric(A, B);

cout << e.simplify_indexed() << endl;

// -> 2

e = spinor_metric(A_co, B_co) * spinor_metric(B, C);

cout << e.simplify_indexed() << endl;

// -> -delta.A~C

}

The matrix representation of the spinor metric is [[0, 1], [-1, 0]].

4.14.6.5 Epsilon tensor

The epsilon tensor is totally antisymmetric, its number of indices is equal to the dimension of
the index space (the indices must all be of the same numeric dimension), and ‘eps.1.2.3...’
(resp. ‘eps~0~1~2...’) is defined to be 1. Its behavior with indices that have a variance also
depends on the signature of the metric. Epsilon tensors are output as ‘eps’.

There are three functions defined to create epsilon tensors in 2, 3 and 4 dimensions:

ex epsilon_tensor(const ex & i1, const ex & i2);

ex epsilon_tensor(const ex & i1, const ex & i2, const ex & i3);

ex lorentz_eps(const ex & i1, const ex & i2, const ex & i3, const ex & i4,

bool pos_sig = false);

The first two functions create an epsilon tensor in 2 or 3 Euclidean dimensions, the last function
creates an epsilon tensor in a 4-dimensional Minkowski space (the last bool argument specifies
whether the metric has negative or positive signature, as in the case of the Minkowski metric
tensor):

{

varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4), rho(symbol("rho"), 4),

sig(symbol("sig"), 4), lam(symbol("lam"), 4), bet(symbol("bet"), 4);

e = lorentz_eps(mu, nu, rho, sig) *

lorentz_eps(mu.toggle_variance(), nu.toggle_variance(), lam, bet);

cout << simplify_indexed(e) << endl;

// -> 2*eta~bet~rho*eta~sig~lam-2*eta~sig~bet*eta~rho~lam

idx i(symbol("i"), 3), j(symbol("j"), 3), k(symbol("k"), 3);

symbol A("A"), B("B");

e = epsilon_tensor(i, j, k) * indexed(A, j) * indexed(B, k);

cout << simplify_indexed(e) << endl;

// -> -B.k*A.j*eps.i.k.j

e = epsilon_tensor(i, j, k) * indexed(A, j) * indexed(A, k);

cout << simplify_indexed(e) << endl;

// -> 0

}
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4.14.7 Linear algebra

The matrix class can be used with indices to do some simple linear algebra (linear combinations
and products of vectors and matrices, traces and scalar products):

{

idx i(symbol("i"), 2), j(symbol("j"), 2);

symbol x("x"), y("y");

// A is a 2x2 matrix, X is a 2x1 vector

matrix A = {{1, 2},

{3, 4}};

matrix X = {{x, y}};

cout << indexed(A, i, i) << endl;

// -> 5

ex e = indexed(A, i, j) * indexed(X, j);

cout << e.simplify_indexed() << endl;

// -> [[2*y+x],[4*y+3*x]].i

e = indexed(A, i, j) * indexed(X, i) + indexed(X, j) * 2;

cout << e.simplify_indexed() << endl;

// -> [[3*y+3*x,6*y+2*x]].j

}

You can of course obtain the same results with the matrix::add(), matrix::mul() and
matrix::trace() methods (see Section 4.13 [Matrices], page 26) but with indices you don’t
have to worry about transposing matrices.

Matrix indices always start at 0 and their dimension must match the number of rows/columns of
the matrix. Matrices with one row or one column are vectors and can have one or two indices (it
doesn’t matter whether it’s a row or a column vector). Other matrices must have two indices.

You should be careful when using indices with variance on matrices. GiNaC doesn’t look at the
variance and doesn’t know that ‘F~mu~nu’ and ‘F.mu.nu’ are different matrices. In this case you
should use only one form for ‘F’ and explicitly multiply it with a matrix representation of the
metric tensor.

4.15 Non-commutative objects

GiNaC is equipped to handle certain non-commutative algebras. Three classes of non-commutative
objects are built-in which are mostly of use in high energy physics:

• Clifford (Dirac) algebra (class clifford)

• su(3) Lie algebra (class color)

• Matrices (unindexed) (class matrix)

The clifford and color classes are subclasses of indexed because the elements of these algebras
usually carry indices. The matrix class is described in more detail in Section 4.13 [Matrices],
page 26.

Unlike most computer algebra systems, GiNaC does not primarily provide an operator (often
denoted ‘&*’) for representing inert products of arbitrary objects. Rather, non-commutativity
in GiNaC is a property of the classes of objects involved, and non-commutative products are
formed with the usual ‘*’ operator, as are ordinary products. GiNaC is capable of figuring out by
itself which objects commutate and will group the factors by their class. Consider this example:

...
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varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4);

idx a(symbol("a"), 8), b(symbol("b"), 8);

ex e = -dirac_gamma(mu) * (2*color_T(a)) * 8 * color_T(b) * dirac_gamma(nu);

cout << e << endl;

// -> -16*(gamma~mu*gamma~nu)*(T.a*T.b)

...

As can be seen, GiNaC pulls out the overall commutative factor ‘-16’ and groups the non-
commutative factors (the gammas and the su(3) generators) together while preserving the order
of factors within each class (because Clifford objects commutate with color objects). The resulting
expression is a commutative product with two factors that are themselves non-commutative
products (‘gamma~mu*gamma~nu’ and ‘T.a*T.b’). For clarification, parentheses are placed around
the non-commutative products in the output.

Non-commutative products are internally represented by objects of the class ncmul, as opposed
to commutative products which are handled by the mul class. You will normally not have to
worry about this distinction, though.

The advantage of this approach is that you never have to worry about using (or forgetting to
use) a special operator when constructing non-commutative expressions. Also, non-commutative
products in GiNaC are more intelligent than in other computer algebra systems; they can, for
example, automatically canonicalize themselves according to rules specified in the implementation
of the non-commutative classes. The drawback is that to work with other than the built-in
algebras you have to implement new classes yourself. Both symbols and user-defined functions
can be specified as being non-commutative. For symbols, this is done by subclassing class symbol;
for functions, by explicitly setting the return type (see Section 6.2 [Symbolic functions], page 89).

Information about the commutativity of an object or expression can be obtained with the two
member functions

unsigned ex::return_type() const;

return_type_t ex::return_type_tinfo() const;

The return_type() function returns one of three values (defined in the header file flags.h),
corresponding to three categories of expressions in GiNaC:

• return_types::commutative: Commutates with everything. Most GiNaC classes are of
this kind.

• return_types::noncommutative: Non-commutative, belonging to a certain class of non-
commutative objects which can be determined with the return_type_tinfo() method.
Expressions of this category commutate with everything except noncommutative expressions
of the same class.

• return_types::noncommutative_composite: Non-commutative, composed of
non-commutative objects of different classes. Expressions of this category don’t commutate
with any other noncommutative or noncommutative_composite expressions.

The return_type_tinfo() method returns an object of type return_type_t that contains
information about the type of the expression and, if given, its representation label (see section
on dirac gamma matrices for more details). The objects of type return_type_t can be tested
for equality to test whether two expressions belong to the same category and therefore may not
commute.

Here are a couple of examples:
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� �
Expression return_type()

42 commutative

2*x-y commutative

dirac_ONE() noncommutative

dirac_gamma(mu)*dirac_gamma(nu) noncommutative

2*color_T(a) noncommutative

dirac_ONE()*color_T(a) noncommutative_composite
 	
A last note: With the exception of matrices, positive integer powers of non-commutative objects
are automatically expanded in GiNaC. For example, pow(a*b, 2) becomes ‘a*b*a*b’ if ‘a’ and
‘b’ are non-commutative expressions).

4.15.1 Clifford algebra

Clifford algebras are supported in two flavours: Dirac gamma matrices (more physical) and
generic Clifford algebras (more mathematical).

4.15.1.1 Dirac gamma matrices

Dirac gamma matrices (note that GiNaC doesn’t treat them as matrices) are designated
as ‘gamma~mu’ and satisfy ‘gamma~mu*gamma~nu + gamma~nu*gamma~mu = 2*eta~mu~nu’ where
‘eta~mu~nu’ is the Minkowski metric tensor. Dirac gammas are constructed by the function

ex dirac_gamma(const ex & mu, unsigned char rl = 0);

which takes two arguments: the index and a representation label in the range 0 to 255 which is
used to distinguish elements of different Clifford algebras (this is also called a spin line index).
Gammas with different labels commutate with each other. The dimension of the index can be 4
or (in the framework of dimensional regularization) any symbolic value. Spinor indices on Dirac
gammas are not supported in GiNaC.

The unity element of a Clifford algebra is constructed by

ex dirac_ONE(unsigned char rl = 0);

Please notice: You must always use dirac_ONE() when referring to multiples of the unity element,
even though it’s customary to omit it. E.g. instead of dirac_gamma(mu)*(dirac_slash(q,4)+m)
you have to write dirac_gamma(mu)*(dirac_slash(q,4)+m*dirac_ONE()). Otherwise, GiNaC
will complain and/or produce incorrect results.

There is a special element ‘gamma5’ that commutates with all other gammas, has a unit square,
and in 4 dimensions equals ‘gamma~0 gamma~1 gamma~2 gamma~3’, provided by

ex dirac_gamma5(unsigned char rl = 0);

The chiral projectors ‘(1+/-gamma5)/2’ are also available as proper objects, constructed by

ex dirac_gammaL(unsigned char rl = 0);

ex dirac_gammaR(unsigned char rl = 0);

They observe the relations ‘gammaL^2 = gammaL’, ‘gammaR^2 = gammaR’, and ‘gammaL gammaR =

gammaR gammaL = 0’.

Finally, the function

ex dirac_slash(const ex & e, const ex & dim, unsigned char rl = 0);

creates a term that represents a contraction of ‘e’ with the Dirac Lorentz vector (it behaves like
a term of the form ‘e.mu gamma~mu’ with a unique index whose dimension is given by the dim

argument). Such slashed expressions are printed with a trailing backslash, e.g. ‘e\’.

In products of dirac gammas, superfluous unity elements are automatically removed, squares are
replaced by their values, and ‘gamma5’, ‘gammaL’ and ‘gammaR’ are moved to the front.
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The simplify_indexed() function performs contractions in gamma strings, for example

{

...

symbol a("a"), b("b"), D("D");

varidx mu(symbol("mu"), D);

ex e = dirac_gamma(mu) * dirac_slash(a, D)

* dirac_gamma(mu.toggle_variance());

cout << e << endl;

// -> gamma~mu*a\*gamma.mu

e = e.simplify_indexed();

cout << e << endl;

// -> -D*a\+2*a\

cout << e.subs(D == 4) << endl;

// -> -2*a\

...

}

To calculate the trace of an expression containing strings of Dirac gammas you use one of the
functions

ex dirac_trace(const ex & e, const std::set<unsigned char> & rls,

const ex & trONE = 4);

ex dirac_trace(const ex & e, const lst & rll, const ex & trONE = 4);

ex dirac_trace(const ex & e, unsigned char rl = 0, const ex & trONE = 4);

These functions take the trace over all gammas in the specified set rls or list rll of representation
labels, or the single label rl; gammas with other labels are left standing. The last argument to
dirac_trace() is the value to be returned for the trace of the unity element, which defaults to
4.

The dirac_trace() function is a linear functional that is equal to the ordinary matrix trace
only in D = 4 dimensions. In particular, the functional is not cyclic in D 6= 4 dimensions when
acting on expressions containing ‘gamma5’, so it’s not a proper trace. This ‘gamma5’ scheme is
described in greater detail in the article The Role of gamma5 in Dimensional Regularization
(Appendix C [Bibliography], page 117).

The value of the trace itself is also usually different in 4 and in D 6= 4 dimensions:

{

// 4 dimensions

varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4), rho(symbol("rho"), 4);

ex e = dirac_gamma(mu) * dirac_gamma(nu) *

dirac_gamma(mu.toggle_variance()) * dirac_gamma(rho);

cout << dirac_trace(e).simplify_indexed() << endl;

// -> -8*eta~rho~nu

}

...

{

// D dimensions

symbol D("D");

varidx mu(symbol("mu"), D), nu(symbol("nu"), D), rho(symbol("rho"), D);

ex e = dirac_gamma(mu) * dirac_gamma(nu) *

dirac_gamma(mu.toggle_variance()) * dirac_gamma(rho);

cout << dirac_trace(e).simplify_indexed() << endl;

// -> 8*eta~rho~nu-4*eta~rho~nu*D

}
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Here is an example for using dirac_trace() to compute a value that appears in the calculation
of the one-loop vacuum polarization amplitude in QED:

{

symbol q("q"), l("l"), m("m"), ldotq("ldotq"), D("D");

varidx mu(symbol("mu"), D), nu(symbol("nu"), D);

scalar_products sp;

sp.add(l, l, pow(l, 2));

sp.add(l, q, ldotq);

ex e = dirac_gamma(mu) *

(dirac_slash(l, D) + dirac_slash(q, D) + m * dirac_ONE()) *

dirac_gamma(mu.toggle_variance()) *

(dirac_slash(l, D) + m * dirac_ONE());

e = dirac_trace(e).simplify_indexed(sp);

e = e.collect(lst{l, ldotq, m});

cout << e << endl;

// -> (8-4*D)*l^2+(8-4*D)*ldotq+4*D*m^2

}

The canonicalize_clifford() function reorders all gamma products that appear in an ex-
pression to a canonical (but not necessarily simple) form. You can use this to compare two
expressions or for further simplifications:

{

varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4);

ex e = dirac_gamma(mu) * dirac_gamma(nu) + dirac_gamma(nu) * dirac_gamma(mu);

cout << e << endl;

// -> gamma~mu*gamma~nu+gamma~nu*gamma~mu

e = canonicalize_clifford(e);

cout << e << endl;

// -> 2*ONE*eta~mu~nu

}

4.15.1.2 A generic Clifford algebra

A generic Clifford algebra, i.e. a 2n dimensional algebra with generators ek satisfying the
identities eiej + ejei =M(i, j) +M(j, i) for some bilinear form (metric) M(i, j), which may be
non-symmetric (see arXiv:math.QA/9911180) and contain symbolic entries. Such generators are
created by the function

ex clifford_unit(const ex & mu, const ex & metr, unsigned char rl = 0);

where mu should be a idx (or descendant) class object indexing the generators. Parameter metr
defines the metricM(i, j) and can be represented by a square matrix, tensormetric or indexed
class object. In fact, any expression either with two free indices or without indices at all is
admitted as metr. In the later case an indexed object with two newly created indices with metr

as its op(0) will be used. Optional parameter rl allows to distinguish different Clifford algebras,
which will commute with each other.

Note that the call clifford_unit(mu, minkmetric()) creates something very close to dirac_

gamma(mu), although dirac_gamma have more efficient simplification mechanism. Also, the object
created by clifford_unit(mu, minkmetric()) is not aware about the symmetry of its metric,
see the start of the previous paragraph. A more accurate analog of ’dirac gamma(mu)’ should
be specifies as follows:
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clifford_unit(mu, indexed(minkmetric(),sy_symm(),varidx(symbol("i"),4),varidx(symbol("j"),4)));

The method clifford::get_metric() returns a metric defining this Clifford number.

If the matrix M(i, j) is in fact symmetric you may prefer to create the Clifford algebra units
with a call like that

ex e = clifford_unit(mu, indexed(M, sy_symm(), i, j));

since this may yield some further automatic simplifications. Again, for a metric defined through
a matrix such a symmetry is detected automatically.

Individual generators of a Clifford algebra can be accessed in several ways. For example

{

...

idx i(symbol("i"), 4);

realsymbol s("s");

ex M = diag_matrix(lst{1, -1, 0, s});

ex e = clifford_unit(i, M);

ex e0 = e.subs(i == 0);

ex e1 = e.subs(i == 1);

ex e2 = e.subs(i == 2);

ex e3 = e.subs(i == 3);

...

}

will produce four anti-commuting generators of a Clifford algebra with properties e20 = 1, e21 = −1,
e22 = 0 and e23 = s.

A similar effect can be achieved from the function

ex lst_to_clifford(const ex & v, const ex & mu, const ex & metr,

unsigned char rl = 0);

ex lst_to_clifford(const ex & v, const ex & e);

which converts a list or vector v = (v0, v1, ..., vn) into the Clifford number v0e0 + v1e1 + ...+ vnen
with ‘e.k’ directly supplied in the second form of the procedure. In the first form the Clifford unit
‘e.k’ is generated by the call of clifford_unit(mu, metr, rl). If the number of components
supplied by v exceeds the dimensionality of the Clifford unit e by 1 then function lst_to_

clifford() uses the following pseudo-vector representation: v01+ v1e0 + v2e1 + ...+ vn+1en

The previous code may be rewritten with the help of lst_to_clifford() as follows

{

...

idx i(symbol("i"), 4);

realsymbol s("s");

ex M = diag_matrix({1, -1, 0, s});

ex e0 = lst_to_clifford(lst{1, 0, 0, 0}, i, M);

ex e1 = lst_to_clifford(lst{0, 1, 0, 0}, i, M);

ex e2 = lst_to_clifford(lst{0, 0, 1, 0}, i, M);

ex e3 = lst_to_clifford(lst{0, 0, 0, 1}, i, M);

...

}

There is the inverse function

lst clifford_to_lst(const ex & e, const ex & c, bool algebraic = true);

which takes an expression e and tries to find a list v = (v0, v1, ..., vn) such that the expression is
either vector e = v0c0 + v1c1 + ...+ vncn or pseudo-vector v01+ v1e0 + v2e1 + ...+ vn+1en with
respect to the given Clifford units c. Here none of the ‘v~k’ should contain Clifford units c (of
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course, this may be impossible). This function can use an algebraic method (default) or a
symbolic one. With the algebraic method the ‘v~k’ are calculated as (eck + cke)/c

2
k. If c

2
k is

zero or is not numeric for some ‘k’ then the method will be automatically changed to symbolic.
The same effect is obtained by the assignment (algebraic = false) in the procedure call.

There are several functions for (anti-)automorphisms of Clifford algebras:

ex clifford_prime(const ex & e)

inline ex clifford_star(const ex & e)

inline ex clifford_bar(const ex & e)

The automorphism of a Clifford algebra clifford_prime() simply changes signs of all Clifford
units in the expression. The reversion of a Clifford algebra clifford_star() reverses the order
of Clifford units in any product. Finally the main anti-automorphism of a Clifford algebra
clifford_bar() is the composition of the previous two, i.e. it makes the reversion and changes
signs of all Clifford units in a product. These functions correspond to the notations e′, e∗ and e
used in Clifford algebra textbooks.

The function

ex clifford_norm(const ex & e);

calculates the norm of a Clifford number from the expression ||e||2 = ee. The inverse of a Clifford
expression is returned by the function

ex clifford_inverse(const ex & e);

which calculates it as e−1 = e/||e||2. If ||e|| = 0 then an exception is raised.

If a Clifford number happens to be a factor of dirac_ONE() then we can convert it to a “real”
(non-Clifford) expression by the function

ex remove_dirac_ONE(const ex & e);

The function canonicalize_clifford() works for a generic Clifford algebra in a similar way as
for Dirac gammas.

The next provided function is

ex clifford_moebius_map(const ex & a, const ex & b, const ex & c,

const ex & d, const ex & v, const ex & G,

unsigned char rl = 0);

ex clifford_moebius_map(const ex & M, const ex & v, const ex & G,

unsigned char rl = 0);

It takes a list or vector v and makes the Moebius (conformal or linear-fractional) transformation ‘v
-> (av+b)/(cv+d)’ defined by the matrix ‘M = [[a, b], [c, d]]’. The parameter G defines the
metric of the surrounding (pseudo-)Euclidean space. This can be an indexed object, tensormetric,
matrix or a Clifford unit, in the later case the optional parameter rl is ignored even if supplied.
Depending from the type of v the returned value of this function is either a vector or a list
holding vector’s components.

Finally the function

char clifford_max_label(const ex & e, bool ignore_ONE = false);

can detect a presence of Clifford objects in the expression e: if such objects are found it returns the
maximal representation_label of them, otherwise -1. The optional parameter ignore_ONE
indicates if dirac_ONE objects should be ignored during the search.

LaTeX output for Clifford units looks like \clifford[1]{e}^{{\nu}}, where 1 is the
representation_label and \nu is the index of the corresponding unit. This provides a flexible
typesetting with a suitable definition of the \clifford command. For example, the definition

\newcommand{\clifford}[1][]{}

typesets all Clifford units identically, while the alternative definition

\newcommand{\clifford}[2][]{\ifcase #1 #2\or \tilde{#2} \or \breve{#2} \fi}
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prints units with representation_label=0 as e, with representation_label=1 as ~e and with
representation_label=2 as ĕ.

4.15.2 Color algebra

For computations in quantum chromodynamics, GiNaC implements the base elements and
structure constants of the su(3) Lie algebra (color algebra). The base elements Ta are constructed
by the function

ex color_T(const ex & a, unsigned char rl = 0);

which takes two arguments: the index and a representation label in the range 0 to 255 which is
used to distinguish elements of different color algebras. Objects with different labels commutate
with each other. The dimension of the index must be exactly 8 and it should be of class idx, not
varidx.

The unity element of a color algebra is constructed by

ex color_ONE(unsigned char rl = 0);

Please notice: You must always use color_ONE() when referring to multiples of the unity
element, even though it’s customary to omit it. E.g. instead of color_T(a)*(color_

T(b)*indexed(X,b)+1) you have to write color_T(a)*(color_T(b)*indexed(X,b)+color_

ONE()). Otherwise, GiNaC may produce incorrect results.

The functions

ex color_d(const ex & a, const ex & b, const ex & c);

ex color_f(const ex & a, const ex & b, const ex & c);

create the symmetric and antisymmetric structure constants dabc and fabc which satisfy {Ta, Tb} =
1/3deltaab+ dabcTc and [Ta, Tb] = ifabcTc.

These functions evaluate to their numerical values, if you supply numeric indices to them. The
index values should be in the range from 1 to 8, not from 0 to 7. This departure from usual
conventions goes along better with the notations used in physical literature.

There’s an additional function

ex color_h(const ex & a, const ex & b, const ex & c);

which returns the linear combination ‘color_d(a, b, c)+I*color_f(a, b, c)’.

The function simplify_indexed() performs some simplifications on expressions containing color
objects:

{

...

idx a(symbol("a"), 8), b(symbol("b"), 8), c(symbol("c"), 8),

k(symbol("k"), 8), l(symbol("l"), 8);

e = color_d(a, b, l) * color_f(a, b, k);

cout << e.simplify_indexed() << endl;

// -> 0

e = color_d(a, b, l) * color_d(a, b, k);

cout << e.simplify_indexed() << endl;

// -> 5/3*delta.k.l

e = color_f(l, a, b) * color_f(a, b, k);

cout << e.simplify_indexed() << endl;

// -> 3*delta.k.l

e = color_h(a, b, c) * color_h(a, b, c);
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cout << e.simplify_indexed() << endl;

// -> -32/3

e = color_h(a, b, c) * color_T(b) * color_T(c);

cout << e.simplify_indexed() << endl;

// -> -2/3*T.a

e = color_h(a, b, c) * color_T(a) * color_T(b) * color_T(c);

cout << e.simplify_indexed() << endl;

// -> -8/9*ONE

e = color_T(k) * color_T(a) * color_T(b) * color_T(k);

cout << e.simplify_indexed() << endl;

// -> 1/4*delta.b.a*ONE-1/6*T.a*T.b

...

To calculate the trace of an expression containing color objects you use one of the functions

ex color_trace(const ex & e, const std::set<unsigned char> & rls);

ex color_trace(const ex & e, const lst & rll);

ex color_trace(const ex & e, unsigned char rl = 0);

These functions take the trace over all color ‘T’ objects in the specified set rls or list rll of
representation labels, or the single label rl; ‘T’s with other labels are left standing. For example:

...

e = color_trace(4 * color_T(a) * color_T(b) * color_T(c));

cout << e << endl;

// -> -I*f.a.c.b+d.a.c.b

}
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5 Methods and functions

In this chapter the most important algorithms provided by GiNaC will be described. Some of
them are implemented as functions on expressions, others are implemented as methods provided
by expression objects. If they are methods, there exists a wrapper function around it, so you can
alternatively call it in a functional way as shown in the simple example:

...

cout << "As method: " << sin(1).evalf() << endl;

cout << "As function: " << evalf(sin(1)) << endl;

...

The general rule is that wherever methods accept one or more parameters (arg1, arg2, . . . ) the
order of arguments the function wrapper accepts is the same but preceded by the object to act
on (object, arg1, arg2, . . . ). This approach is the most natural one in an OO model but it
may lead to confusion for MapleV users because where they would type A:=x+1; subs(x=2,A);

GiNaC would require A=x+1; subs(A,x==2); (after proper declaration of A and x). On the
other hand, since MapleV returns 3 on A:=x^2+3; coeff(A,x,0); (GiNaC: A=pow(x,2)+3;
coeff(A,x,0);) it is clear that MapleV is not trying to be consistent here. Also, users of
MuPAD will in most cases feel more comfortable with GiNaC’s convention. All function wrappers
are implemented as simple inline functions which just call the corresponding method and are
only provided for users uncomfortable with OO who are dead set to avoid method invocations.
Generally, nested function wrappers are much harder to read than a sequence of methods and
should therefore be avoided if possible. On the other hand, not everything in GiNaC is a method
on class ex and sometimes calling a function cannot be avoided.

5.1 Getting information about expressions

5.1.1 Checking expression types

Sometimes it’s useful to check whether a given expression is a plain number, a sum, a polynomial
with integer coefficients, or of some other specific type. GiNaC provides a couple of functions for
this:

bool is_a<T>(const ex & e);

bool is_exactly_a<T>(const ex & e);

bool ex::info(unsigned flag);

unsigned ex::return_type() const;

return_type_t ex::return_type_tinfo() const;

When the test made by is_a<T>() returns true, it is safe to call one of the functions ex_to<T>(),
where T is one of the class names (See Section 4.4 [The class hierarchy], page 12, for a list of all
classes). For example, assuming e is an ex:

{

...

if (is_a<numeric>(e))

numeric n = ex_to<numeric>(e);

...

}

is_a<T>(e) allows you to check whether the top-level object of an expression ‘e’ is an instance
of the GiNaC class ‘T’ (See Section 4.4 [The class hierarchy], page 12, for a list of all classes).
This is most useful, e.g., for checking whether an expression is a number, a sum, or a product:

{

symbol x("x");

ex e1 = 42;
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ex e2 = 4*x - 3;

is_a<numeric>(e1); // true

is_a<numeric>(e2); // false

is_a<add>(e1); // false

is_a<add>(e2); // true

is_a<mul>(e1); // false

is_a<mul>(e2); // false

}

In contrast, is_exactly_a<T>(e) allows you to check whether the top-level object of an expres-
sion ‘e’ is an instance of the GiNaC class ‘T’, not including parent classes.

The info() method is used for checking certain attributes of expressions. The possible values
for the flag argument are defined in ginac/flags.h, the most important being explained in
the following table:� �
Flag Returns true if the object is. . .
numeric . . . a number (same as is_a<numeric>(...))
real . . . a real number, symbol or constant (i.e. is not complex)
rational . . . an exact rational number (integers are rational, too)
integer . . . a (non-complex) integer
crational . . . an exact (complex) rational number (such as 2/3 + 7/2 ∗ I)
cinteger . . . a (complex) integer (such as 2− 3 ∗ I)
positive . . .not complex and greater than 0
negative . . .not complex and less than 0
nonnegative . . .not complex and greater than or equal to 0
posint . . . an integer greater than 0
negint . . . an integer less than 0
nonnegint . . . an integer greater than or equal to 0
even . . . an even integer
odd . . . an odd integer
prime . . . a prime integer (probabilistic primality test)
relation . . . a relation (same as is_a<relational>(...))
relation_equal . . . a == relation
relation_not_equal . . . a != relation
relation_less . . . a < relation
relation_less_or_equal . . . a <= relation
relation_greater . . . a > relation
relation_greater_or_

equal

. . . a >= relation

symbol . . . a symbol (same as is_a<symbol>(...))
list . . . a list (same as is_a<lst>(...))
polynomial . . . a polynomial (i.e. only consists of sums and products of

numbers and symbols with positive integer powers)

integer_polynomial . . . a polynomial with (non-complex) integer coefficients
cinteger_polynomial . . . a polynomial with (possibly complex) integer coefficients

(such as 2− 3 ∗ I)
rational_polynomial . . . a polynomial with (non-complex) rational coefficients
crational_polynomial . . . a polynomial with (possibly complex) rational coefficients

(such as 2/3 + 7/2 ∗ I)
rational_function . . . a rational function (x+ y, z/(x+ y))
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To determine whether an expression is commutative or non-commutative and if so, with which
other expressions it would commutate, you use the methods return_type() and return_type_

tinfo(). See Section 4.15 [Non-commutative objects], page 39, for an explanation of these.

5.1.2 Accessing subexpressions

Many GiNaC classes, like add, mul, lst, and function, act as containers for subexpressions.
For example, the subexpressions of a sum (an add object) are the individual terms, and the
subexpressions of a function are the function’s arguments.

GiNaC provides several ways of accessing subexpressions. The first way is to use the two methods

size_t ex::nops();

ex ex::op(size_t i);

nops() determines the number of subexpressions (operands) contained in the expression, while
op(i) returns the i-th (0..nops()-1) subexpression. In the case of a power object, op(0) will
return the basis and op(1) the exponent. For indexed objects, op(0) is the base expression and
op(i), i > 0 are the indices.

The second way to access subexpressions is via the STL-style random-access iterator class
const_iterator and the methods

const_iterator ex::begin();

const_iterator ex::end();

begin() returns an iterator referring to the first subexpression; end() returns an iterator which
is one-past the last subexpression. If the expression has no subexpressions, then begin() ==

end(). These iterators can also be used in conjunction with non-modifying STL algorithms.

Here is an example that (non-recursively) prints the subexpressions of a given expression in three
different ways:

{

ex e = ...

// with nops()/op()

for (size_t i = 0; i != e.nops(); ++i)

cout << e.op(i) << endl;

// with iterators

for (const_iterator i = e.begin(); i != e.end(); ++i)

cout << *i << endl;

// with iterators and STL copy()

std::copy(e.begin(), e.end(), std::ostream_iterator<ex>(cout, "\n"));

}

op()/nops() and const_iterator only access an expression’s immediate children. GiNaC
provides two additional iterator classes, const_preorder_iterator and const_postorder_

iterator, that iterate over all objects in an expression tree, in preorder or postorder, respectively.
They are STL-style forward iterators, and are created with the methods

const_preorder_iterator ex::preorder_begin();

const_preorder_iterator ex::preorder_end();

const_postorder_iterator ex::postorder_begin();

const_postorder_iterator ex::postorder_end();

The following example illustrates the differences between const_iterator, const_preorder_
iterator, and const_postorder_iterator:

{
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symbol A("A"), B("B"), C("C");

ex e = lst{lst{A, B}, C};

std::copy(e.begin(), e.end(),

std::ostream_iterator<ex>(cout, "\n"));

// {A,B}

// C

std::copy(e.preorder_begin(), e.preorder_end(),

std::ostream_iterator<ex>(cout, "\n"));

// {{A,B},C}

// {A,B}

// A

// B

// C

std::copy(e.postorder_begin(), e.postorder_end(),

std::ostream_iterator<ex>(cout, "\n"));

// A

// B

// {A,B}

// C

// {{A,B},C}

}

Finally, the left-hand side and right-hand side expressions of objects of class relational (and
only of these) can also be accessed with the methods

ex ex::lhs();

ex ex::rhs();

5.1.3 Comparing expressions

Expressions can be compared with the usual C++ relational operators like ==, >, and < but if the
expressions contain symbols, the result is usually not determinable and the result will be false,
except in the case of the != operator. You should also be aware that GiNaC will only do the most
trivial test for equality (subtracting both expressions), so something like (pow(x,2)+x)/x==x+1
will return false.

Actually, if you construct an expression like a == b, this will be represented by an object of the
relational class (see Section 4.11 [Relations], page 24) which is not evaluated until (explicitly
or implicitly) cast to a bool.

There are also two methods

bool ex::is_equal(const ex & other);

bool ex::is_zero();

for checking whether one expression is equal to another, or equal to zero, respectively. See also
the method ex::is_zero_matrix(), see Section 4.13 [Matrices], page 26.

5.1.4 Ordering expressions

Sometimes it is necessary to establish a mathematically well-defined ordering on a set of arbitrary
expressions, for example to use expressions as keys in a std::map<> container, or to bring a
vector of expressions into a canonical order (which is done internally by GiNaC for sums and
products).
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The operators <, > etc. described in the last section cannot be used for this, as they don’t
implement an ordering relation in the mathematical sense. In particular, they are not guaranteed
to be antisymmetric: if ‘a’ and ‘b’ are different expressions, and a < b yields false, then b < a

doesn’t necessarily yield true.

By default, STL classes and algorithms use the < and == operators to compare objects, which
are unsuitable for expressions, but GiNaC provides two functors that can be supplied as proper
binary comparison predicates to the STL:

class ex_is_less {

public:

bool operator()(const ex &lh, const ex &rh) const;

};

class ex_is_equal {

public:

bool operator()(const ex &lh, const ex &rh) const;

};

For example, to define a map that maps expressions to strings you have to use

std::map<ex, std::string, ex_is_less> myMap;

Omitting the ex_is_less template parameter will introduce spurious bugs because the map
operates improperly.

Other examples for the use of the functors:

std::vector<ex> v;

// fill vector

...

// sort vector

std::sort(v.begin(), v.end(), ex_is_less());

// count the number of expressions equal to ’1’

unsigned num_ones = std::count_if(v.begin(), v.end(),

[](const ex& e) { return ex_is_equal()(e, 1); });

The implementation of ex_is_less uses the member function

int ex::compare(const ex & other) const;

which returns 0 if *this and other are equal, −1 if *this sorts before other, and 1 if *this
sorts after other.

5.2 Numerical evaluation

GiNaC keeps algebraic expressions, numbers and constants in their exact form. To evaluate them
using floating-point arithmetic you need to call

ex ex::evalf() const;

The accuracy of the evaluation is controlled by the global object Digits which can be assigned
an integer value. The default value of Digits is 17. See Section 4.6 [Numbers], page 16, for more
information and examples.

To evaluate an expression to a double floating-point number you can call evalf() followed by
numeric::to_double(), like this:

{

// Approximate sin(x/Pi)

symbol x("x");
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ex e = series(sin(x/Pi), x == 0, 6);

// Evaluate numerically at x=0.1

ex f = evalf(e.subs(x == 0.1));

// ex_to<numeric> is an unsafe cast, so check the type first

if (is_a<numeric>(f)) {

double d = ex_to<numeric>(f).to_double();

cout << d << endl;

// -> 0.0318256

} else

// error

}

5.3 Substituting expressions

Algebraic objects inside expressions can be replaced with arbitrary expressions via the .subs()
method:

ex ex::subs(const ex & e, unsigned options = 0);

ex ex::subs(const exmap & m, unsigned options = 0);

ex ex::subs(const lst & syms, const lst & repls, unsigned options = 0);

In the first form, subs() accepts a relational of the form ‘object == expression’ or a lst of
such relationals:

{

symbol x("x"), y("y");

ex e1 = 2*x*x-4*x+3;

cout << "e1(7) = " << e1.subs(x == 7) << endl;

// -> 73

ex e2 = x*y + x;

cout << "e2(-2, 4) = " << e2.subs(lst{x == -2, y == 4}) << endl;

// -> -10

}

If you specify multiple substitutions, they are performed in parallel, so e.g. subs(lst{x == y, y

== x}) exchanges ‘x’ and ‘y’.

The second form of subs() takes an exmap object which is a pair associative container that maps
expressions to expressions (currently implemented as a std::map). This is the most efficient one
of the three subs() forms and should be used when the number of objects to be substituted is
large or unknown.

Using this form, the second example from above would look like this:

{

symbol x("x"), y("y");

ex e2 = x*y + x;

exmap m;

m[x] = -2;

m[y] = 4;

cout << "e2(-2, 4) = " << e2.subs(m) << endl;

}
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The third form of subs() takes two lists, one for the objects to be replaced and one for the
expressions to be substituted (both lists must contain the same number of elements). Using this
form, you would write

{

symbol x("x"), y("y");

ex e2 = x*y + x;

cout << "e2(-2, 4) = " << e2.subs(lst{x, y}, lst{-2, 4}) << endl;

}

The optional last argument to subs() is a combination of subs_options flags. There are three
options available: subs_options::no_pattern disables pattern matching, which makes large
subs() operations significantly faster if you are not using patterns. The second option, subs_
options::algebraic enables algebraic substitutions in products and powers. See Section 5.4
[Pattern matching and advanced substitutions], page 54, for more information about patterns
and algebraic substitutions. The third option, subs_options::no_index_renaming disables the
feature that dummy indices are renamed if the substitution could give a result in which a dummy
index occurs more than two times. This is sometimes necessary if you want to use subs() to
rename your dummy indices.

subs() performs syntactic substitution of any complete algebraic object; it does not try to match
sub-expressions as is demonstrated by the following example:

{

symbol x("x"), y("y"), z("z");

ex e1 = pow(x+y, 2);

cout << e1.subs(x+y == 4) << endl;

// -> 16

ex e2 = sin(x)*sin(y)*cos(x);

cout << e2.subs(sin(x) == cos(x)) << endl;

// -> cos(x)^2*sin(y)

ex e3 = x+y+z;

cout << e3.subs(x+y == 4) << endl;

// -> x+y+z

// (and not 4+z as one might expect)

}

A more powerful form of substitution using wildcards is described in the next section.

5.4 Pattern matching and advanced substitutions

GiNaC allows the use of patterns for checking whether an expression is of a certain form or
contains subexpressions of a certain form, and for substituting expressions in a more general way.

A pattern is an algebraic expression that optionally contains wildcards. A wildcard is a special
kind of object (of class wildcard) that represents an arbitrary expression. Every wildcard has
a label which is an unsigned integer number to allow having multiple different wildcards in a
pattern. Wildcards are printed as ‘$label’ (this is also the way they are specified in ginsh). In
C++ code, wildcard objects are created with the call

ex wild(unsigned label = 0);

which is simply a wrapper for the wildcard() constructor with a shorter name.

Some examples for patterns:
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Constructed as Output as
wild() ‘$0’
pow(x,wild()) ‘x^$0’
atan2(wild(1),wild(2)) ‘atan2($1,$2)’
indexed(A,idx(wild(),3)) ‘A.$0’

Notes:

• Wildcards behave like symbols and are subject to the same algebraic rules. E.g., ‘$0+2*$0’
is automatically transformed to ‘3*$0’.

• As shown in the last example, to use wildcards for indices you have to use them as the value
of an idx object. This is because indices must always be of class idx (or a subclass).

• Wildcards only represent expressions or subexpressions. It is not possible to use them as
placeholders for other properties like index dimension or variance, representation labels,
symmetry of indexed objects etc.

• Because wildcards are commutative, it is not possible to use wildcards as part of noncommu-
tative products.

• A pattern does not have to contain wildcards. ‘x’ and ‘x+y’ are also valid patterns.

5.4.1 Matching expressions

The most basic application of patterns is to check whether an expression matches a given pattern.
This is done by the function

bool ex::match(const ex & pattern);

bool ex::match(const ex & pattern, exmap& repls);

This function returns true when the expression matches the pattern and false if it doesn’t. If
used in the second form, the actual subexpressions matched by the wildcards get returned in
the associative array repls with ‘wildcard’ as a key. If match() returns false, repls remains
unmodified.

The matching algorithm works as follows:

• A single wildcard matches any expression. If one wildcard appears multiple times in a
pattern, it must match the same expression in all places (e.g. ‘$0’ matches anything, and
‘$0*($0+1)’ matches ‘x*(x+1)’ but not ‘x*(y+1)’).

• If the expression is not of the same class as the pattern, the match fails (i.e. a sum only
matches a sum, a function only matches a function, etc.).

• If the pattern is a function, it only matches the same function (i.e. ‘sin($0)’ matches
‘sin(x)’ but doesn’t match ‘exp(x)’).

• Except for sums and products, the match fails if the number of subexpressions (nops()) is
not equal to the number of subexpressions of the pattern.

• If there are no subexpressions, the expressions and the pattern must be equal (in the sense
of is_equal()).

• Except for sums and products, each subexpression (op()) must match the corresponding
subexpression of the pattern.

Sums (add) and products (mul) are treated in a special way to account for their commutativity
and associativity:

• If the pattern contains a term or factor that is a single wildcard, this one is used as the
global wildcard. If there is more than one such wildcard, one of them is chosen as the global
wildcard in a random way.

• Every term/factor of the pattern, except the global wildcard, is matched against every term
of the expression in sequence. If no match is found, the whole match fails. Terms that did
match are not considered in further matches.
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• If there are no unmatched terms left, the match succeeds. Otherwise the match fails unless
there is a global wildcard in the pattern, in which case this wildcard matches the remaining
terms.

In general, having more than one single wildcard as a term of a sum or a factor of a product
(such as ‘a+$0+$1’) will lead to unpredictable or ambiguous results.

Here are some examples in ginsh to demonstrate how it works (the match() function in ginsh

returns ‘FAIL’ if the match fails, and the list of wildcard replacements otherwise):

> match((x+y)^a,(x+y)^a);

{}

> match((x+y)^a,(x+y)^b);

FAIL

> match((x+y)^a,$1^$2);

{$1==x+y,$2==a}

> match((x+y)^a,$1^$1);

FAIL

> match((x+y)^(x+y),$1^$1);

{$1==x+y}

> match((x+y)^(x+y),$1^$2);

{$1==x+y,$2==x+y}

> match((a+b)*(a+c),($1+b)*($1+c));

{$1==a}

> match((a+b)*(a+c),(a+$1)*(a+$2));

{$1==b,$2==c}

(Unpredictable. The result might also be [$1==c,$2==b].)

> match((a+b)*(a+c),($1+$2)*($1+$3));

(The result is undefined. Due to the sequential nature of the algorithm

and the re-ordering of terms in GiNaC, the match for the first factor

may be {$1==a,$2==b} in which case the match for the second factor

succeeds, or it may be {$1==b,$2==a} which causes the second match to

fail.)

> match(a*(x+y)+a*z+b,a*$1+$2);

(This is also ambiguous and may return either {$1==z,$2==a*(x+y)+b} or

{$1=x+y,$2=a*z+b}.)

> match(a+b+c+d+e+f,c);

FAIL

> match(a+b+c+d+e+f,c+$0);

{$0==a+e+b+f+d}

> match(a+b+c+d+e+f,c+e+$0);

{$0==a+b+f+d}

> match(a+b,a+b+$0);

{$0==0}

> match(a*b^2,a^$1*b^$2);

FAIL

(The matching is syntactic, not algebraic, and "a" doesn’t match "a^$1"

even though a==a^1.)

> match(x*atan2(x,x^2),$0*atan2($0,$0^2));

{$0==x}

> match(atan2(y,x^2),atan2(y,$0));

{$0==x^2}
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5.4.2 Matching parts of expressions

A more general way to look for patterns in expressions is provided by the member function

bool ex::has(const ex & pattern);

This function checks whether a pattern is matched by an expression itself or by any of its
subexpressions.

Again some examples in ginsh for illustration (in ginsh, has() returns ‘1’ for true and ‘0’ for
false):

> has(x*sin(x+y+2*a),y);

1

> has(x*sin(x+y+2*a),x+y);

0

(This is because in GiNaC, "x+y" is not a subexpression of "x+y+2*a" (which

has the subexpressions "x", "y" and "2*a".)

> has(x*sin(x+y+2*a),x+y+$1);

1

(But this is possible.)

> has(x*sin(2*(x+y)+2*a),x+y);

0

(This fails because "2*(x+y)" automatically gets converted to "2*x+2*y" of

which "x+y" is not a subexpression.)

> has(x+1,x^$1);

0

(Although x^1==x and x^0==1, neither "x" nor "1" are actually of the form

"x^something".)

> has(4*x^2-x+3,$1*x);

1

> has(4*x^2+x+3,$1*x);

0

(Another possible pitfall. The first expression matches because the term

"-x" has the form "(-1)*x" in GiNaC. To check whether a polynomial

contains a linear term you should use the coeff() function instead.)

The method

bool ex::find(const ex & pattern, exset& found);

works a bit like has() but it doesn’t stop upon finding the first match. Instead, it appends all
found matches to the specified list. If there are multiple occurrences of the same expression, it is
entered only once to the list. find() returns false if no matches were found (in ginsh, it returns
an empty list):

> find(1+x+x^2+x^3,x);

{x}

> find(1+x+x^2+x^3,y);

{}

> find(1+x+x^2+x^3,x^$1);

{x^3,x^2}

(Note the absence of "x".)

> expand((sin(x)+sin(y))*(a+b));

sin(y)*a+sin(x)*b+sin(x)*a+sin(y)*b

> find(%,sin($1));

{sin(y),sin(x)}
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5.4.3 Substituting expressions

Probably the most useful application of patterns is to use them for substituting expressions with
the subs() method. Wildcards can be used in the search patterns as well as in the replacement
expressions, where they get replaced by the expressions matched by them. subs() doesn’t know
anything about algebra; it performs purely syntactic substitutions.

Some examples:

> subs(a^2+b^2+(x+y)^2,$1^2==$1^3);

b^3+a^3+(x+y)^3

> subs(a^4+b^4+(x+y)^4,$1^2==$1^3);

b^4+a^4+(x+y)^4

> subs((a+b+c)^2,a+b==x);

(a+b+c)^2

> subs((a+b+c)^2,a+b+$1==x+$1);

(x+c)^2

> subs(a+2*b,a+b==x);

a+2*b

> subs(4*x^3-2*x^2+5*x-1,x==a);

-1+5*a-2*a^2+4*a^3

> subs(4*x^3-2*x^2+5*x-1,x^$0==a^$0);

-1+5*x-2*a^2+4*a^3

> subs(sin(1+sin(x)),sin($1)==cos($1));

cos(1+cos(x))

> expand(subs(a*sin(x+y)^2+a*cos(x+y)^2+b,cos($1)^2==1-sin($1)^2));

a+b

The last example would be written in C++ in this way:

{

symbol a("a"), b("b"), x("x"), y("y");

e = a*pow(sin(x+y), 2) + a*pow(cos(x+y), 2) + b;

e = e.subs(pow(cos(wild()), 2) == 1-pow(sin(wild()), 2));

cout << e.expand() << endl;

// -> a+b

}

5.4.4 The option algebraic

Both has() and subs() take an optional argument to pass them extra options. This sec-
tion describes what happens if you give the former the option has_options::algebraic

or the latter subs_options::algebraic. In that case the matching condition for pow-
ers and multiplications is changed in such a way that they become more intuitive. In-
tuition says that x*y is a part of x*y*z. If you use these options you will find that
(x*y*z).has(x*y, has_options::algebraic) indeed returns true. Besides matching some
of the factors of a product also powers match as often as is possible without getting negative
exponents. For example (x^5*y^2*z).subs(x^2*y^2==c, subs_options::algebraic) will re-
turn x*c^2*z. This also works with negative powers: (x^(-3)*y^(-2)*z).subs(1/(x*y)==c,
subs_options::algebraic) will return x^(-1)*c^2*z.

Please notice: this only works for multiplications and not for locating x+y within x+y+z.

5.5 Applying a function on subexpressions

Sometimes you may want to perform an operation on specific parts of an expression while leaving
the general structure of it intact. An example of this would be a matrix trace operation: the
trace of a sum is the sum of the traces of the individual terms. That is, the trace should map
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on the sum, by applying itself to each of the sum’s operands. It is possible to do this manually
which usually results in code like this:

ex calc_trace(ex e)

{

if (is_a<matrix>(e))

return ex_to<matrix>(e).trace();

else if (is_a<add>(e)) {

ex sum = 0;

for (size_t i=0; i<e.nops(); i++)

sum += calc_trace(e.op(i));

return sum;

} else if (is_a<mul>)(e)) {

...

} else {

...

}

}

This is, however, slightly inefficient (if the sum is very large it can take a long time to add
the terms one-by-one), and its applicability is limited to a rather small class of expressions. If
calc_trace() is called with a relation or a list as its argument, you will probably want the trace
to be taken on both sides of the relation or of all elements of the list.

GiNaC offers the map() method to aid in the implementation of such operations:

ex ex::map(map_function & f) const;

ex ex::map(ex (*f)(const ex & e)) const;

In the first (preferred) form, map() takes a function object that is subclassed from the map_

function class. In the second form, it takes a pointer to a function that accepts and returns an
expression. map() constructs a new expression of the same type, applying the specified function
on all subexpressions (in the sense of op()), non-recursively.

The use of a function object makes it possible to supply more arguments to the function that is
being mapped, or to keep local state information. The map_function class declares a virtual
function call operator that you can overload. Here is a sample implementation of calc_trace()
that uses map() in a recursive fashion:

struct calc_trace : public map_function {

ex operator()(const ex &e)

{

if (is_a<matrix>(e))

return ex_to<matrix>(e).trace();

else if (is_a<mul>(e)) {

...

} else

return e.map(*this);

}

};

This function object could then be used like this:

{

ex M = ... // expression with matrices

calc_trace do_trace;

ex tr = do_trace(M);

}
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Here is another example for you to meditate over. It removes quadratic terms in a variable from
an expanded polynomial:

struct map_rem_quad : public map_function {

ex var;

map_rem_quad(const ex & var_) : var(var_) {}

ex operator()(const ex & e)

{

if (is_a<add>(e) || is_a<mul>(e))

return e.map(*this);

else if (is_a<power>(e) &&

e.op(0).is_equal(var) && e.op(1).info(info_flags::even))

return 0;

else

return e;

}

};

...

{

symbol x("x"), y("y");

ex e;

for (int i=0; i<8; i++)

e += pow(x, i) * pow(y, 8-i) * (i+1);

cout << e << endl;

// -> 4*y^5*x^3+5*y^4*x^4+8*y*x^7+7*y^2*x^6+2*y^7*x+6*y^3*x^5+3*y^6*x^2+y^8

map_rem_quad rem_quad(x);

cout << rem_quad(e) << endl;

// -> 4*y^5*x^3+8*y*x^7+2*y^7*x+6*y^3*x^5+y^8

}

ginsh offers a slightly different implementation of map() that allows applying algebraic functions
to operands. The second argument to map() is an expression containing the wildcard ‘$0’ which
acts as the placeholder for the operands:

> map(a*b,sin($0));

sin(a)*sin(b)

> map(a+2*b,sin($0));

sin(a)+sin(2*b)

> map({a,b,c},$0^2+$0);

{a^2+a,b^2+b,c^2+c}

Note that it is only possible to use algebraic functions in the second argument. You can not use
functions like ‘diff()’, ‘op()’, ‘subs()’ etc. because these are evaluated immediately:

> map({a,b,c},diff($0,a));

{0,0,0}

This is because "diff($0,a)" evaluates to "0", so the command is equivalent

to "map({a,b,c},0)".
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5.6 Visitors and tree traversal

Suppose that you need a function that returns a list of all indices appearing in an arbitrary
expression. The indices can have any dimension, and for indices with variance you always want
the covariant version returned.

You can’t use get_free_indices() because you also want to include dummy indices in the list,
and you can’t use find() as it needs specific index dimensions (and it would require two passes:
one for indices with variance, one for plain ones).

The obvious solution to this problem is a tree traversal with a type switch, such as the following:

void gather_indices_helper(const ex & e, lst & l)

{

if (is_a<varidx>(e)) {

const varidx & vi = ex_to<varidx>(e);

l.append(vi.is_covariant() ? vi : vi.toggle_variance());

} else if (is_a<idx>(e)) {

l.append(e);

} else {

size_t n = e.nops();

for (size_t i = 0; i < n; ++i)

gather_indices_helper(e.op(i), l);

}

}

lst gather_indices(const ex & e)

{

lst l;

gather_indices_helper(e, l);

l.sort();

l.unique();

return l;

}

This works fine but fans of object-oriented programming will feel uncomfortable with the type
switch. One reason is that there is a possibility for subtle bugs regarding derived classes. If we
had, for example, written

if (is_a<idx>(e)) {

...

} else if (is_a<varidx>(e)) {

...

in gather_indices_helper, the code wouldn’t have worked because the first line "absorbs" all
classes derived from idx, including varidx, so the special case for varidx would never have been
executed.

Also, for a large number of classes, a type switch like the above can get unwieldy and inefficient
(it’s a linear search, after all). gather_indices_helper only checks for two classes, but if you
had to write a function that required a different implementation for nearly every GiNaC class,
the result would be very hard to maintain and extend.

The cleanest approach to the problem would be to add a new virtual function to GiNaC’s class
hierarchy. In our example, there would be specializations for idx and varidx while the default
implementation in basic performed the tree traversal. Unfortunately, in C++ it’s impossible to
add virtual member functions to existing classes without changing their source and recompiling
everything. GiNaC comes with source, so you could actually do this, but for a small algorithm
like the one presented this would be impractical.
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One solution to this dilemma is the Visitor design pattern, which is implemented in GiNaC
(actually, Robert Martin’s Acyclic Visitor variation, described in detail in https://condor.

depaul.edu/dmumaugh/OOT/Design-Principles/acv.pdf). Instead of adding virtual functions
to the class hierarchy to implement operations, GiNaC provides a single "bouncing" method
accept() that takes an instance of a special visitor class and redirects execution to the one
visit() virtual function of the visitor that matches the type of object that accept() was being
invoked on.

Visitors in GiNaC must derive from the global visitor class as well as from the class T::visitor
of each class T they want to visit, and implement the member functions void visit(const T &)

for each class.

A call of

void ex::accept(visitor & v) const;

will then dispatch to the correct visit() member function of the specified visitor v for the type
of GiNaC object at the root of the expression tree (e.g. a symbol, an idx or a mul).

Here is an example of a visitor:

class my_visitor

: public visitor, // this is required

public add::visitor, // visit add objects

public numeric::visitor, // visit numeric objects

public basic::visitor // visit basic objects

{

void visit(const add & x)

{ cout << "called with an add object" << endl; }

void visit(const numeric & x)

{ cout << "called with a numeric object" << endl; }

void visit(const basic & x)

{ cout << "called with a basic object" << endl; }

};

which can be used as follows:

...

symbol x("x");

ex e1 = 42;

ex e2 = 4*x-3;

ex e3 = 8*x;

my_visitor v;

e1.accept(v);

// prints "called with a numeric object"

e2.accept(v);

// prints "called with an add object"

e3.accept(v);

// prints "called with a basic object"

...

The visit(const basic &) method gets called for all objects that are not numeric or add and
acts as an (optional) default.

From a conceptual point of view, the visit() methods of the visitor behave like a newly added
virtual function of the visited hierarchy. In addition, visitors can store state in member variables,

https://condor.depaul.edu/dmumaugh/OOT/Design-Principles/acv.pdf
https://condor.depaul.edu/dmumaugh/OOT/Design-Principles/acv.pdf
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and they can be extended by deriving a new visitor from an existing one, thus building hierarchies
of visitors.

We can now rewrite our index example from above with a visitor:

class gather_indices_visitor

: public visitor, public idx::visitor, public varidx::visitor

{

lst l;

void visit(const idx & i)

{

l.append(i);

}

void visit(const varidx & vi)

{

l.append(vi.is_covariant() ? vi : vi.toggle_variance());

}

public:

const lst & get_result() // utility function

{

l.sort();

l.unique();

return l;

}

};

What’s missing is the tree traversal. We could implement it in visit(const basic &), but
GiNaC has predefined methods for this:

void ex::traverse_preorder(visitor & v) const;

void ex::traverse_postorder(visitor & v) const;

void ex::traverse(visitor & v) const;

traverse_preorder() visits a node before visiting its subexpressions, while traverse_

postorder() visits a node after visiting its subexpressions. traverse() is a synonym for
traverse_preorder().

Here is a new implementation of gather_indices() that uses the visitor and traverse():

lst gather_indices(const ex & e)

{

gather_indices_visitor v;

e.traverse(v);

return v.get_result();

}

Alternatively, you could use pre- or postorder iterators for the tree traversal:

lst gather_indices(const ex & e)

{

gather_indices_visitor v;

for (const_preorder_iterator i = e.preorder_begin();

i != e.preorder_end(); ++i) {

i->accept(v);

}

return v.get_result();
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}

5.7 Polynomial arithmetic

5.7.1 Testing whether an expression is a polynomial

Testing whether an expression is a polynomial in one or more variables can be done with the
method

bool ex::is_polynomial(const ex & vars) const;

In the case of more than one variable, the variables are given as a list.

(x*y*sin(y)).is_polynomial(x) // Returns true.

(x*y*sin(y)).is_polynomial(lst{x,y}) // Returns false.

5.7.2 Expanding and collecting

A polynomial in one or more variables has many equivalent representations. Some useful ones
serve a specific purpose. Consider for example the trivariate polynomial 4 ∗ x ∗ y + x ∗ z + 20 ∗
y2 + 21 ∗ y ∗ z + 4 ∗ z2 (written down here in output-style). It is equivalent to the factorized
polynomial (x+5 ∗ y+4 ∗ z) ∗ (4 ∗ y+ z). Other representations are the recursive ones where one
collects for exponents in one of the three variable. Since the factors are themselves polynomials
in the remaining two variables the procedure can be repeated. In our example, two possibilities
would be (4 ∗ y+ z) ∗x+20 ∗ y2 +21 ∗ y ∗ z+4 ∗ z2 and 20 ∗ y2 +(21 ∗ z+4 ∗x) ∗ y+4 ∗ z2 +x ∗ z.
To bring an expression into expanded form, its method

ex ex::expand(unsigned options = 0);

may be called. In our example above, this corresponds to 4∗x∗y+x∗z+20∗y2+21∗y∗z+4∗z2.
Again, since the canonical form in GiNaC is not easy to guess you should be prepared to see
different orderings of terms in such sums!

Another useful representation of multivariate polynomials is as a univariate polynomial in one of
the variables with the coefficients being polynomials in the remaining variables. The method
collect() accomplishes this task:

ex ex::collect(const ex & s, bool distributed = false);

The first argument to collect() can also be a list of objects in which case the result is
either a recursively collected polynomial, or a polynomial in a distributed form with terms like
c ∗ x1e1 ∗ ... ∗ xnen, as specified by the distributed flag.

Note that the original polynomial needs to be in expanded form (for the variables concerned) in
order for collect() to be able to find the coefficients properly.

The following ginsh transcript shows an application of collect() together with find():

> a=expand((sin(x)+sin(y))*(1+p+q)*(1+d));

d*p*sin(x)+p*sin(x)+q*d*sin(x)+q*sin(y)+d*sin(x)+q*d*sin(y)+sin(y)+d*sin(y)

+q*sin(x)+d*sin(y)*p+sin(x)+sin(y)*p

> collect(a,{p,q});

d*sin(x)+(d*sin(x)+sin(y)+d*sin(y)+sin(x))*p

+(d*sin(x)+sin(y)+d*sin(y)+sin(x))*q+sin(y)+d*sin(y)+sin(x)

> collect(a,find(a,sin($1)));

(1+q+d+q*d+d*p+p)*sin(y)+(1+q+d+q*d+d*p+p)*sin(x)

> collect(a,{find(a,sin($1)),p,q});

(1+(1+d)*p+d+q*(1+d))*sin(x)+(1+(1+d)*p+d+q*(1+d))*sin(y)

> collect(a,{find(a,sin($1)),d});

(1+q+d*(1+q+p)+p)*sin(y)+(1+q+d*(1+q+p)+p)*sin(x)
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Polynomials can often be brought into a more compact form by collecting common factors from
the terms of sums. This is accomplished by the function

ex collect_common_factors(const ex & e);

This function doesn’t perform a full factorization but only looks for factors which are already
explicitly present:

> collect_common_factors(a*x+a*y);

(x+y)*a

> collect_common_factors(a*x^2+2*a*x*y+a*y^2);

a*(2*x*y+y^2+x^2)

> collect_common_factors(a*(b*(a+c)*x+b*((a+c)*x+(a+c)*y)*y));

(c+a)*a*(x*y+y^2+x)*b

5.7.3 Degree and coefficients

The degree and low degree of a polynomial in expanded form can be obtained using the two
methods

int ex::degree(const ex & s);

int ex::ldegree(const ex & s);

These functions even work on rational functions, returning the asymptotic degree. By definition,
the degree of zero is zero. To extract a coefficient with a certain power from an expanded
polynomial you use

ex ex::coeff(const ex & s, int n);

You can also obtain the leading and trailing coefficients with the methods

ex ex::lcoeff(const ex & s);

ex ex::tcoeff(const ex & s);

which are equivalent to coeff(s, degree(s)) and coeff(s, ldegree(s)), respectively.

An application is illustrated in the next example, where a multivariate polynomial is analyzed:

{

symbol x("x"), y("y");

ex PolyInp = 4*pow(x,3)*y + 5*x*pow(y,2) + 3*y

- pow(x+y,2) + 2*pow(y+2,2) - 8;

ex Poly = PolyInp.expand();

for (int i=Poly.ldegree(x); i<=Poly.degree(x); ++i) {

cout << "The x^" << i << "-coefficient is "

<< Poly.coeff(x,i) << endl;

}

cout << "As polynomial in y: "

<< Poly.collect(y) << endl;

}

When run, it returns an output in the following fashion:

The x^0-coefficient is y^2+11*y

The x^1-coefficient is 5*y^2-2*y

The x^2-coefficient is -1

The x^3-coefficient is 4*y

As polynomial in y: -x^2+(5*x+1)*y^2+(-2*x+4*x^3+11)*y

As always, the exact output may vary between different versions of GiNaC or even from run to
run since the internal canonical ordering is not within the user’s sphere of influence.
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degree(), ldegree(), coeff(), lcoeff(), tcoeff() and collect() can also be used to a
certain degree with non-polynomial expressions as they not only work with symbols but with
constants, functions and indexed objects as well:

{

symbol a("a"), b("b"), c("c"), x("x");

idx i(symbol("i"), 3);

ex e = pow(sin(x) - cos(x), 4);

cout << e.degree(cos(x)) << endl;

// -> 4

cout << e.expand().coeff(sin(x), 3) << endl;

// -> -4*cos(x)

e = indexed(a+b, i) * indexed(b+c, i);

e = e.expand(expand_options::expand_indexed);

cout << e.collect(indexed(b, i)) << endl;

// -> a.i*c.i+(a.i+c.i)*b.i+b.i^2

}

5.7.4 Polynomial division

The two functions

ex quo(const ex & a, const ex & b, const ex & x);

ex rem(const ex & a, const ex & b, const ex & x);

compute the quotient and remainder of univariate polynomials in the variable ‘x’. The results
satisfy a = b ∗ quo(a, b, x) + rem(a, b, x).

The additional function

ex prem(const ex & a, const ex & b, const ex & x);

computes the pseudo-remainder of ‘a’ and ‘b’ which satisfies c ∗ a = b ∗ q + prem(a, b, x), where
c = b.lcoeff(x)(a.degree(x)− b.degree(x) + 1).

Exact division of multivariate polynomials is performed by the function

bool divide(const ex & a, const ex & b, ex & q);

If ‘b’ divides ‘a’ over the rationals, this function returns true and returns the quotient in the
variable q. Otherwise it returns false in which case the value of q is undefined.

5.7.5 Unit, content and primitive part

The methods

ex ex::unit(const ex & x);

ex ex::content(const ex & x);

ex ex::primpart(const ex & x);

ex ex::primpart(const ex & x, const ex & c);

return the unit part, content part, and primitive polynomial of a multivariate polynomial with
respect to the variable ‘x’ (the unit part being the sign of the leading coefficient, the content
part being the GCD of the coefficients, and the primitive polynomial being the input polynomial
divided by the unit and content parts). The second variant of primpart() expects the previously
calculated content part of the polynomial in c, which enables it to work faster in the case where
the content part has already been computed. The product of unit, content, and primitive part is
the original polynomial.

Additionally, the method

void ex::unitcontprim(const ex & x, ex & u, ex & c, ex & p);
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computes the unit, content, and primitive parts in one go, returning them in u, c, and p,
respectively.

5.7.6 GCD, LCM and resultant

The functions for polynomial greatest common divisor and least common multiple have the
synopsis

ex gcd(const ex & a, const ex & b);

ex lcm(const ex & a, const ex & b);

The functions gcd() and lcm() accept two expressions a and b as arguments and return a
new expression, their greatest common divisor or least common multiple, respectively. If the
polynomials a and b are coprime gcd(a,b) returns 1 and lcm(a,b) returns the product of a and
b. Note that all the coefficients must be rationals.

#include <ginac/ginac.h>

using namespace GiNaC;

int main()

{

symbol x("x"), y("y"), z("z");

ex P_a = 4*x*y + x*z + 20*pow(y, 2) + 21*y*z + 4*pow(z, 2);

ex P_b = x*y + 3*x*z + 5*pow(y, 2) + 19*y*z + 12*pow(z, 2);

ex P_gcd = gcd(P_a, P_b);

// x + 5*y + 4*z

ex P_lcm = lcm(P_a, P_b);

// 4*x*y^2 + 13*y*x*z + 20*y^3 + 81*y^2*z + 67*y*z^2 + 3*x*z^2 + 12*z^3

}

The resultant of two expressions only makes sense with polynomials. It is always computed with
respect to a specific symbol within the expressions. The function has the interface

ex resultant(const ex & a, const ex & b, const ex & s);

Resultants are symmetric in a and b. The following example computes the resultant of two
expressions with respect to x and y, respectively:

#include <ginac/ginac.h>

using namespace GiNaC;

int main()

{

symbol x("x"), y("y");

ex e1 = x+pow(y,2), e2 = 2*pow(x,3)-1; // x+y^2, 2*x^3-1

ex r;

r = resultant(e1, e2, x);

// -> 1+2*y^6

r = resultant(e1, e2, y);

// -> 1-4*x^3+4*x^6

}

5.7.7 Square-free decomposition

Square-free decomposition is available in GiNaC:

ex sqrfree(const ex & a, const lst & l = lst{});
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Here is an example that by the way illustrates how the exact form of the result may slightly
depend on the order of differentiation, calling for some care with subsequent processing of the
result:

...

symbol x("x"), y("y");

ex BiVarPol = expand(pow(2-2*y,3) * pow(1+x*y,2) * pow(x-2*y,2) * (x+y));

cout << sqrfree(BiVarPol, lst{x,y}) << endl;

// -> 8*(1-y)^3*(y*x^2-2*y+x*(1-2*y^2))^2*(y+x)

cout << sqrfree(BiVarPol, lst{y,x}) << endl;

// -> 8*(1-y)^3*(-y*x^2+2*y+x*(-1+2*y^2))^2*(y+x)

cout << sqrfree(BiVarPol) << endl;

// -> depending on luck, any of the above

...

Note also, how factors with the same exponents are not fully factorized with this method.

5.7.8 Square-free partial fraction decomposition

GiNaC also supports square-free partial fraction decomposition of rational functions:

ex sqrfree_parfrac(const ex & a, const symbol & x);

It is called square-free because it assumes a square-free factorization of the input’s denominator:

...

symbol x("x");

ex rat = (x-4)/(pow(x,2)*(x+2));

cout << sqrfree_parfrac(rat, x) << endl;

// -> -2*x^(-2)+3/2*x^(-1)-3/2*(2+x)^(-1)

5.7.9 Polynomial factorization

Polynomials can also be fully factored with a call to the function

ex factor(const ex & a, unsigned int options = 0);

The factorization works for univariate and multivariate polynomials with rational coefficients.
The following code snippet shows its capabilities:

...

cout << factor(pow(x,2)-1) << endl;

// -> (1+x)*(-1+x)

cout << factor(expand((x-y*z)*(x-pow(y,2)-pow(z,3))*(x+y+z))) << endl;

// -> (y+z+x)*(y*z-x)*(y^2-x+z^3)

cout << factor(pow(x,2)-1+sin(pow(x,2)-1)) << endl;

// -> -1+sin(-1+x^2)+x^2

...

The results are as expected except for the last one where no factorization seems to have been
done. This is due to the default option factor_options::polynomial (equals zero) to factor(),
which tells GiNaC to try a factorization only if the expression is a valid polynomial. In the
shown example this is not the case, because one term is a function.

There exists a second option factor_options::all, which tells GiNaC to ignore non-polynomial
parts of an expression and also to look inside function arguments. With this option the example
gives:

...
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cout << factor(pow(x,2)-1+sin(pow(x,2)-1), factor_options::all)

<< endl;

// -> (-1+x)*(1+x)+sin((-1+x)*(1+x))

...

GiNaC’s factorization functions cannot handle algebraic extensions. Therefore the following
example does not factor:

...

cout << factor(pow(x,2)-2) << endl;

// -> -2+x^2 and not (x-sqrt(2))*(x+sqrt(2))

...

Factorization is useful in many applications. A lot of algorithms in computer algebra depend
on the ability to factor a polynomial. Of course, factorization can also be used to simplify
expressions, but it is costly and applying it to complicated expressions (high degrees or many
terms) may consume far too much time. So usually, looking for a GCD at strategic points in a
calculation is the cheaper and more appropriate alternative.

5.8 Rational expressions

5.8.1 The normal method

Some basic form of simplification of expressions is called for frequently. GiNaC provides the
method .normal(), which converts a rational function into an equivalent rational function of the
form ‘numerator/denominator’ where numerator and denominator are coprime. If the input
expression is already a fraction, it just finds the GCD of numerator and denominator and cancels
it, otherwise it performs fraction addition and multiplication.

.normal() can also be used on expressions which are not rational functions as it will replace
all non-rational objects (like functions or non-integer powers) by temporary symbols to bring
the expression to the domain of rational functions before performing the normalization, and
re-substituting these symbols afterwards. This algorithm is also available as a separate method
.to_rational(), described below.

This means that both expressions t1 and t2 are indeed simplified in this little code snippet:

{

symbol x("x");

ex t1 = (pow(x,2) + 2*x + 1)/(x + 1);

ex t2 = (pow(sin(x),2) + 2*sin(x) + 1)/(sin(x) + 1);

std::cout << "t1 is " << t1.normal() << std::endl;

std::cout << "t2 is " << t2.normal() << std::endl;

}

Of course this works for multivariate polynomials too, so the ratio of the sample-polynomials from
the section about GCD and LCM above would be normalized to P_a/P_b = (4*y+z)/(y+3*z).

5.8.2 Numerator and denominator

The numerator and denominator of an expression can be obtained with

ex ex::numer();

ex ex::denom();

ex ex::numer_denom();

These functions will first normalize the expression as described above and then return the
numerator, denominator, or both as a list, respectively. If you need both numerator and
denominator, call numer_denom(): it is faster than using numer() and denom() separately. And
even more important: a separate evaluation of numer() and denom() may result in a spurious
sign, e.g. for $x/(x^2-1)$ numer() may return $x$ and denom() $1-x^2$.
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5.8.3 Converting to a polynomial or rational expression

Some of the methods described so far only work on polynomials or rational functions. GiNaC
provides a way to extend the domain of these functions to general expressions by using the
temporary replacement algorithm described above. You do this by calling

ex ex::to_polynomial(exmap & m);

or

ex ex::to_rational(exmap & m);

on the expression to be converted. The supplied exmap will be filled with the generated temporary
symbols and their replacement expressions in a format that can be used directly for the subs()
method. It can also already contain a list of replacements from an earlier application of .to_
polynomial() or .to_rational(), so it’s possible to use it on multiple expressions and get
consistent results.

The difference between .to_polynomial() and .to_rational() is probably best illustrated
with an example:

{

symbol x("x"), y("y");

ex a = 2*x/sin(x) - y/(3*sin(x));

cout << a << endl;

exmap mp;

ex p = a.to_polynomial(mp);

cout << " = " << p << "\n with " << mp << endl;

// = symbol3*symbol2*y+2*symbol2*x

// with {symbol2==sin(x)^(-1),symbol3==-1/3}

exmap mr;

ex r = a.to_rational(mr);

cout << " = " << r << "\n with " << mr << endl;

// = -1/3*symbol4^(-1)*y+2*symbol4^(-1)*x

// with {symbol4==sin(x)}

}

The following more useful example will print ‘sin(x)-cos(x)’:

{

symbol x("x");

ex a = pow(sin(x), 2) - pow(cos(x), 2);

ex b = sin(x) + cos(x);

ex q;

exmap m;

divide(a.to_polynomial(m), b.to_polynomial(m), q);

cout << q.subs(m) << endl;

}

5.9 Symbolic differentiation

GiNaC’s objects know how to differentiate themselves. Thus, a polynomial (class add) knows
that its derivative is the sum of the derivatives of all the monomials:

{

symbol x("x"), y("y"), z("z");

ex P = pow(x, 5) + pow(x, 2) + y;
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cout << P.diff(x,2) << endl;

// -> 20*x^3 + 2

cout << P.diff(y) << endl; // 1

// -> 1

cout << P.diff(z) << endl; // 0

// -> 0

}

If a second integer parameter n is given, the diff method returns the nth derivative.

If every object and every function is told what its derivative is, all derivatives of composed
objects can be calculated using the chain rule and the product rule. Consider, for instance
the expression 1/cosh(x). Since the derivative of cosh(x) is sinh(x) and the derivative of
pow(x,-1) is -pow(x,-2), GiNaC can readily compute the composition. It turns out that the
composition is the generating function for Euler Numbers, i.e. the so called nth Euler number
is the coefficient of x^n/n! in the expansion of 1/cosh(x). We may use this identity to code a
function that generates Euler numbers in just three lines:

#include <ginac/ginac.h>

using namespace GiNaC;

ex EulerNumber(unsigned n)

{

symbol x;

const ex generator = pow(cosh(x),-1);

return generator.diff(x,n).subs(x==0);

}

int main()

{

for (unsigned i=0; i<11; i+=2)

std::cout << EulerNumber(i) << std::endl;

return 0;

}

When you run it, it produces the sequence 1, -1, 5, -61, 1385, -50521. We increment the loop
variable i by two since all odd Euler numbers vanish anyways.

5.10 Series expansion

Expressions know how to expand themselves as a Taylor series or (more generally) a Laurent
series. As in most conventional Computer Algebra Systems, no distinction is made between those
two. There is a class of its own for storing such series (class pseries) and a built-in function
(called Order) for storing the order term of the series. As a consequence, if you want to work
with series, i.e. multiply two series, you need to call the method ex::series again to convert it
to a series object with the usual structure (expansion plus order term). A sample application
from special relativity could read:

#include <ginac/ginac.h>

using namespace std;

using namespace GiNaC;

int main()

{

symbol v("v"), c("c");
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ex gamma = 1/sqrt(1 - pow(v/c,2));

ex mass_nonrel = gamma.series(v==0, 10);

cout << "the relativistic mass increase with v is " << endl

<< mass_nonrel << endl;

cout << "the inverse square of this series is " << endl

<< pow(mass_nonrel,-2).series(v==0, 10) << endl;

}

Only calling the series method makes the last output simplify to 1− v2/c2 + O(v10), without
that call we would just have a long series raised to the power −2.
As another instructive application, let us calculate the numerical value of Archimedes’ constant
π (for which there already exists the built-in constant Pi) using John Machin’s amazing formula
π = 16 atan

(
1
5

)
− 4 atan

(
1

239

)
. This equation (and similar ones) were used for over 200 years

for computing digits of pi (see Pi Unleashed). We may expand the arcus tangent around 0 and
insert the fractions 1/5 and 1/239. However, as we have seen, a series in GiNaC carries an order
term with it and the question arises what the system is supposed to do when the fractions are
plugged into that order term. The solution is to use the function series_to_poly() to simply
strip the order term off:

#include <ginac/ginac.h>

using namespace GiNaC;

ex machin_pi(int degr)

{

symbol x;

ex pi_expansion = series_to_poly(atan(x).series(x==0,degr));

ex pi_approx = 16*pi_expansion.subs(x==numeric(1,5))

-4*pi_expansion.subs(x==numeric(1,239));

return pi_approx;

}

int main()

{

using std::cout; // just for fun, another way of...

using std::endl; // ...dealing with this namespace std.

ex pi_frac;

for (int i=2; i<12; i+=2) {

pi_frac = machin_pi(i);

cout << i << ":\t" << pi_frac << endl

<< "\t" << pi_frac.evalf() << endl;

}

return 0;

}

Note how we just called .series(x,degr) instead of .series(x==0,degr). This is a simple
shortcut for ex’s method series(): if the first argument is a symbol the expression is expanded
in that symbol around point 0. When you run this program, it will type out:

2: 3804/1195

3.1832635983263598326

4: 5359397032/1706489875

3.1405970293260603143

6: 38279241713339684/12184551018734375
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3.141621029325034425

8: 76528487109180192540976/24359780855939418203125

3.141591772182177295

10: 327853873402258685803048818236/104359128170408663038552734375

3.1415926824043995174

5.11 Symmetrization

The three methods

ex ex::symmetrize(const lst & l);

ex ex::antisymmetrize(const lst & l);

ex ex::symmetrize_cyclic(const lst & l);

symmetrize an expression by returning the sum over all symmetric, antisymmetric or cyclic
permutations of the specified list of objects, weighted by the number of permutations.

The three additional methods

ex ex::symmetrize();

ex ex::antisymmetrize();

ex ex::symmetrize_cyclic();

symmetrize or antisymmetrize an expression over its free indices.

Symmetrization is most useful with indexed expressions but can be used with almost any kind of
object (anything that is subs()able):

{

idx i(symbol("i"), 3), j(symbol("j"), 3), k(symbol("k"), 3);

symbol A("A"), B("B"), a("a"), b("b"), c("c");

cout << ex(indexed(A, i, j)).symmetrize() << endl;

// -> 1/2*A.j.i+1/2*A.i.j

cout << ex(indexed(A, i, j, k)).antisymmetrize(lst{i, j}) << endl;

// -> -1/2*A.j.i.k+1/2*A.i.j.k

cout << ex(lst{a, b, c}).symmetrize_cyclic(lst{a, b, c}) << endl;

// -> 1/3*{a,b,c}+1/3*{b,c,a}+1/3*{c,a,b}

}
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5.12 Predefined mathematical functions

5.12.1 Overview

GiNaC contains the following predefined mathematical functions:
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� �
Name Function
abs(x) absolute value
step(x) step function
csgn(x) complex sign
conjugate(x) complex conjugation
real_part(x) real part
imag_part(x) imaginary part
sqrt(x) square root (not a GiNaC function, rather an alias for pow(x,

numeric(1, 2)))

sin(x) sine
cos(x) cosine
tan(x) tangent
asin(x) inverse sine
acos(x) inverse cosine
atan(x) inverse tangent
atan2(y, x) inverse tangent with two arguments
sinh(x) hyperbolic sine
cosh(x) hyperbolic cosine
tanh(x) hyperbolic tangent
asinh(x) inverse hyperbolic sine
acosh(x) inverse hyperbolic cosine
atanh(x) inverse hyperbolic tangent
exp(x) exponential function
log(x) natural logarithm
eta(x,y) Eta function: eta(x,y) = log(x*y) - log(x) - log(y)

Li2(x) dilogarithm
Li(m, x) classical polylogarithm as well as multiple polylogarithm
G(a, y) multiple polylogarithm
G(a, s, y) multiple polylogarithm with explicit signs for the imaginary

parts

S(n, p, x) Nielsen’s generalized polylogarithm
H(m, x) harmonic polylogarithm
zeta(m) Riemann’s zeta function as well as multiple zeta value
zeta(m, s) alternating Euler sum
zetaderiv(n, x) derivatives of Riemann’s zeta function
iterated_integral(a, y) iterated integral
iterated_integral(a, y,

N)

iterated integral with explicit truncation parameter

tgamma(x) gamma function
lgamma(x) logarithm of gamma function
beta(x, y) beta function (tgamma(x)*tgamma(y)/tgamma(x+y))
psi(x) psi (digamma) function
psi(n, x) derivatives of psi function (polygamma functions)
EllipticK(x) complete elliptic integral of the first kind
EllipticE(x) complete elliptic integral of the second kind
factorial(n) factorial function n!
binomial(n, k) binomial coefficients
Order(x) order term function in truncated power series
 	



Chapter 5: Methods and functions 76

For functions that have a branch cut in the complex plane, GiNaC follows the conventions of
C/C++ for systems that do not support a signed zero. In particular: the natural logarithm (log)
and the square root (sqrt) both have their branch cuts running along the negative real axis.
The asin, acos, and atanh functions all have two branch cuts starting at +/-1 and running away
towards infinity along the real axis. The atan and asinh functions have two branch cuts starting
at +/-i and running away towards infinity along the imaginary axis. The acosh function has one
branch cut starting at +1 and running towards -infinity. These functions are continuous as the
branch cut is approached coming around the finite endpoint of the cut in a counter clockwise
direction.

5.12.2 Expanding functions

GiNaC knows several expansion laws for trancedent functions, e.g. ea+b = eaeb, |zw| = |z| · |w|
or log(c ∗ d) = log(c) + log(d), (for positive c, d ). In order to use these rules you need to
call expand() method with the option expand_options::expand_transcendental. Another
relevant option is expand_options::expand_function_args. Their usage and interaction can
be seen from the following example:

{

symbol x("x"), y("y");

ex e=exp(pow(x+y,2));

cout << e.expand() << endl;

// -> exp((x+y)^2)

cout << e.expand(expand_options::expand_transcendental) << endl;

// -> exp((x+y)^2)

cout << e.expand(expand_options::expand_function_args) << endl;

// -> exp(2*x*y+x^2+y^2)

cout << e.expand(expand_options::expand_function_args

| expand_options::expand_transcendental) << endl;

// -> exp(y^2)*exp(2*x*y)*exp(x^2)

}

If both flags are set (as in the last call), then GiNaC tries to get the maximal expansion. For
example, for the exponent GiNaC firstly expands the argument and then the function. For the
logarithm and absolute value, GiNaC uses the opposite order: firstly expands the function and
then its argument. Of course, a user can fine-tune this behavior by sequential calls of several
expand() methods with desired flags.

5.12.3 Multiple polylogarithms

The multiple polylogarithm is the most generic member of a family of functions, to which others
like the harmonic polylogarithm, Nielsen’s generalized polylogarithm and the multiple zeta value
belong. Each of these functions can also be written as a multiple polylogarithm with specific
parameters. This whole family of functions is therefore often referred to simply as multiple
polylogarithms, containing Li, G, H, S and zeta. The multiple polylogarithm itself comes in
two variants: Li and G. While Li and G in principle represent the same function, the different
notations are more natural to the series representation or the integral representation, respectively.

To facilitate the discussion of these functions we distinguish between indices and arguments as
parameters. In the table above indices are printed as m, s, n or p, whereas arguments are printed
as x, a and y.

To define a Li, H or zeta with a depth greater than one, you have to pass a GiNaC lst for the
indices m and s, and in the case of Li for the argument x as well. The parameter a of G must
always be a lst containing the arguments in expanded form. If G is used with a third parameter
s, s must have the same length as a. It contains then the signs of the imaginary parts of the
arguments. If s is not given, the signs default to +1. Note that Li and zeta are polymorphic in
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this respect. They can stand in for the classical polylogarithm and Riemann’s zeta function (if
depth is one), as well as for the multiple polylogarithm and the multiple zeta value, respectively.
Note also, that GiNaC doesn’t check whether the lsts for two parameters do have the same
length. It is up to the user to ensure this, otherwise evaluating will result in undefined behavior.

The functions print in LaTeX format as Lim1,m2,...,mk
(x1, x2, . . . , xk), Sn,p(x), Hm1,m2,...,mk

(x) and
ζ(m1,m2, . . . ,mk). If zeta is an alternating zeta sum, i.e. zeta(m,s), the indices with negative
sign are printed with a line above, e.g. ζ(5, 2). The order of indices and arguments in the GiNaC
lsts and in the output is the same.

Definitions and analytical as well as numerical properties of multiple polylogarithms are too
numerous to be covered here. Instead, the user is referred to the publications listed at the end of
this section. The implementation in GiNaC adheres to the definitions and conventions therein,
except for a few differences which will be explicitly stated in the following.

One difference is about the order of the indices and arguments. For GiNaC we adopt the
convention that the indices and arguments are understood to be in the same order as in which
they appear in the series representation. This means Lim1,m2,m3

(x, 1, 1) = Hm1,m2,m3
(x) and

Li 2,1(1, 1) = ζ(2, 1) = ζ(3), but ζ(1, 2) evaluates to infinity. So in comparison to the older ones
of the referenced publications the order of indices and arguments for Li is reversed.

The functions only evaluate if the indices are integers greater than zero, except for the indices
s in zeta and G as well as m in H. Since s will be interpreted as the sequence of signs for
the corresponding indices m or the sign of the imaginary part for the corresponding arguments
a, it must contain 1 or -1, e.g. zeta(lst{3,4}, lst{-1,1}) means ζ(3, 4) and G(lst{a,b},

lst{-1,1}, c) means G(a − 0ε, b + 0ε; c). The definition of H allows indices to be 0, 1 or
-1 (in expanded notation) or equally to be any integer (in compact notation). With GiNaC
expanded and compact notation can be mixed, e.g. lst{0,0,-1,0,1,0,0}, lst{0,0,-1,2,0,0}
and lst{-3,2,0,0} are equivalent as indices. The anonymous evaluator eval() tries to reduce
the functions, if possible, to the least-generic multiple polylogarithm. If all arguments are unit, it
returns zeta. Arguments equal to zero get considered, too. Riemann’s zeta function zeta (with
depth one) evaluates also for negative integers and positive even integers. For example:

> Li({3,1},{x,1});

S(2,2,x)

> H({-3,2},1);

-zeta({3,2},{-1,-1})

> S(3,1,1);

1/90*Pi^4

It is easy to tell for a given function into which other function it can be rewritten, may it be a
less-generic or a more-generic one, except for harmonic polylogarithms H with negative indices or
trailing zeros (the example above gives a hint). Signs can quickly be messed up, for example.
Therefore GiNaC offers a C++ function convert_H_to_Li() to deal with the upgrade of a H to a
multiple polylogarithm Li (eval() already cares for the possible downgrade):

> convert_H_to_Li({0,-2,-1,3},x);

Li({3,1,3},{-x,1,-1})

> convert_H_to_Li({2,-1,0},x);

-Li({2,1},{x,-1})*log(x)+2*Li({3,1},{x,-1})+Li({2,2},{x,-1})

Every function can be numerically evaluated for arbitrary real or complex arguments. The
precision is arbitrary and can be set through the global variable Digits:

> Digits=100;

100

> evalf(zeta({3,1,3,1}));

0.005229569563530960100930652283899231589890420784634635522547448972148869544...
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Note that the convention for arguments on the branch cut in GiNaC as stated above is different
from the one Remiddi and Vermaseren have chosen for the harmonic polylogarithm.

If a function evaluates to infinity, no exceptions are raised, but the function is returned unevaluated,
e.g. ζ(1). In long expressions this helps a lot with debugging, because you can easily spot the
divergencies. But on the other hand, you have to make sure for yourself, that no illegal
cancellations of divergencies happen.

Useful publications:

Nested Sums, Expansion of Transcendental Functions and Multi-Scale Multi-Loop Integrals,
S.Moch, P.Uwer, S.Weinzierl, hep-ph/0110083

Harmonic Polylogarithms, E.Remiddi, J.A.M.Vermaseren, Int.J.Mod.Phys. A15 (2000), pp.
725-754

Special Values of Multiple Polylogarithms, J.Borwein, D.Bradley, D.Broadhurst, P.Lisonek,
Trans.Amer.Math.Soc. 353/3 (2001), pp. 907-941

Numerical Evaluation of Multiple Polylogarithms, J.Vollinga, S.Weinzierl, hep-ph/0410259

5.12.4 Iterated integrals

Multiple polylogarithms are a particular example of iterated integrals. An iterated integral is
defined by the function iterated_integral(a,y). The variable y gives the upper integration
limit for the outermost integration, by convention the lower integration limit is always set to
zero. The variable a must be a GiNaC lst containing sub-classes of integration_kernel as
elements. The depth of the iterated integral corresponds to the number of elements of a. The
available integrands for iterated integrals are (for a more detailed description the user is referred
to the publications listed at the end of this section)� �
Class Description
integration_kernel() Base class, represents the one-form dy
basic_log_kernel() Logarithmic one-form dy/y
multiple_polylog_kernel(z_j) The one-form dy/(y − zj)
ELi_kernel(n, m, x, y) The one form ELin;m(x; y; q)dq/q

Ebar_kernel(n, m, x, y) The one form En;m(x; y; q)dq/q
Kronecker_dtau_kernel(k, z_j,

K, C_k)

The one form CkK(k − 1)/(2πi)kg(k)(zj,Kτ)dq/q

Kronecker_dz_kernel(k, z_j,

tau, K, C_k)

The one form Ck(2πi)
2−kg(k−1)(z − zj,Kτ)dz

Eisenstein_kernel(k, N, a, b, K,

C_k)

The one form CkEk,N,a,b,K(τ)dq/q

Eisenstein_h_kernel(k, N, r, s,

C_k)

The one form Ckhk,N,r,s(τ)dq/q

modular_form_kernel(k, P, C_k) The one form CkPdq/q
user_defined_kernel(f, y) The one form f(y)dy
 	
All parameters are assumed to be such that all integration kernels have a convergent Laurent
expansion around zero with at most a simple pole at zero. The iterated integral may also be
called with an optional third parameter iterated_integral(a,y,N_trunc), in which case the
numerical evaluation will truncate the series expansion at order N_trunc.

The classes Eisenstein_kernel(), Eisenstein_h_kernel() and modular_form_kernel() pro-
vide a method q_expansion_modular_form(q, order), which can used to obtain the q-expansion
of Ek,N,a,b,K(τ), hk,N,r,s(τ) or P to the specified order.

Useful publications:
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Numerical evaluation of iterated integrals related to elliptic Feynman integrals, M.Walden,
S.Weinzierl, arXiv:2010.05271

5.13 Complex expressions

For dealing with complex expressions there are the methods

ex ex::conjugate();

ex ex::real_part();

ex ex::imag_part();

that return respectively the complex conjugate, the real part and the imaginary part of an
expression. Complex conjugation works as expected for all built-in functions and objects. Taking
real and imaginary parts has not yet been implemented for all built-in functions. In cases where
it is not known how to conjugate or take a real/imaginary part one of the functions conjugate,
real_part or imag_part is returned. For instance, in case of a complex symbol x (symbols are
complex by default), one could not simplify conjugate(x). In the case of strings of gamma
matrices, the conjugate method takes the Dirac conjugate.

For example,

{

varidx a(symbol("a"), 4), b(symbol("b"), 4);

symbol x("x");

realsymbol y("y");

cout << (3*I*x*y + sin(2*Pi*I*y)).conjugate() << endl;

// -> -3*I*conjugate(x)*y+sin(-2*I*Pi*y)

cout << (dirac_gamma(a)*dirac_gamma(b)*dirac_gamma5()).conjugate() << endl;

// -> -gamma5*gamma~b*gamma~a

}

If you declare your own GiNaC functions and you want to conjugate them, you will have to
supply a specialized conjugation method for them (see Section 6.2 [Symbolic functions], page 89,
and the GiNaC source-code for abs as an example). GiNaC does not automatically conjugate
user-supplied functions by conjugating their arguments because this would be incorrect on branch
cuts. Also, specialized methods can be provided to take real and imaginary parts of user-defined
functions.

5.14 Solving linear systems of equations

The function lsolve() provides a convenient wrapper around some matrix operations that comes
in handy when a system of linear equations needs to be solved:

ex lsolve(const ex & eqns, const ex & symbols,

unsigned options = solve_algo::automatic);

Here, eqns is a lst of equalities (i.e. class relational) while symbols is a lst of indeterminates.
(See Section 4.4 [The class hierarchy], page 12, for an exposition of class lst).

It returns the lst of solutions as an expression. As an example, let us solve the two equations
a*x+b*y==3 and x-y==b:

{

symbol a("a"), b("b"), x("x"), y("y");

lst eqns = {a*x+b*y==3, x-y==b};

lst vars = {x, y};

cout << lsolve(eqns, vars) << endl;

// -> {x==(3+b^2)/(b+a),y==(3-b*a)/(b+a)}



Chapter 5: Methods and functions 80

When the linear equations eqns are underdetermined, the solution will contain one or more
tautological entries like x==x, depending on the rank of the system. When they are overdetermined,
the solution will be an empty lst. Note the third optional parameter to lsolve(): it accepts
the same parameters as matrix::solve(). This is because lsolve is just a wrapper around
that method.

5.15 Input and output of expressions

5.15.1 Expression output

Expressions can simply be written to any stream:

{

symbol x("x");

ex e = 4.5*I+pow(x,2)*3/2;

cout << e << endl; // prints ’4.5*I+3/2*x^2’

// ...

The default output format is identical to the ginsh input syntax and to that used by most
computer algebra systems, but not directly pastable into a GiNaC C++ program (note that in
the above example, pow(x,2) is printed as ‘x^2’).

It is possible to print expressions in a number of different formats with a set of stream manipula-
tors;

std::ostream & dflt(std::ostream & os);

std::ostream & latex(std::ostream & os);

std::ostream & tree(std::ostream & os);

std::ostream & csrc(std::ostream & os);

std::ostream & csrc_float(std::ostream & os);

std::ostream & csrc_double(std::ostream & os);

std::ostream & csrc_cl_N(std::ostream & os);

std::ostream & index_dimensions(std::ostream & os);

std::ostream & no_index_dimensions(std::ostream & os);

The tree, latex and csrc formats are also available in ginsh via the print(), print_latex()
and print_csrc() functions, respectively.

All manipulators affect the stream state permanently. To reset the output format to the default,
use the dflt manipulator:

// ...

cout << latex; // all output to cout will be in LaTeX format from

// now on

cout << e << endl; // prints ’4.5 i+\frac{3}{2} x^{2}’

cout << sin(x/2) << endl; // prints ’\sin(\frac{1}{2} x)’

cout << dflt; // revert to default output format

cout << e << endl; // prints ’4.5*I+3/2*x^2’

// ...

If you don’t want to affect the format of the stream you’re working with, you can output to a
temporary ostringstream like this:

// ...

ostringstream s;

s << latex << e; // format of cout remains unchanged

cout << s.str() << endl; // prints ’4.5 i+\frac{3}{2} x^{2}’

// ...
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The csrc (an alias for csrc_double), csrc_float, csrc_double and csrc_cl_N manipulators
set the output to a format that can be directly used in a C or C++ program. The three possible
formats select the data types used for numbers (csrc_cl_N uses the classes provided by the CLN
library):

// ...

cout << "f = " << csrc_float << e << ";\n";

cout << "d = " << csrc_double << e << ";\n";

cout << "n = " << csrc_cl_N << e << ";\n";

// ...

The above example will produce (note the x^2 being converted to x*x):

f = (3.0/2.0)*(x*x)+std::complex<float>(0.0,4.5000000e+00);

d = (3.0/2.0)*(x*x)+std::complex<double>(0.0,4.5000000000000000e+00);

n = cln::cl_RA("3/2")*(x*x)+cln::complex(cln::cl_I("0"),cln::cl_F("4.5_17"));

The tree manipulator allows dumping the internal structure of an expression for debugging
purposes:

// ...

cout << tree << e;

}

produces

add, hash=0x0, flags=0x3, nops=2

power, hash=0x0, flags=0x3, nops=2

x (symbol), serial=0, hash=0xc8d5bcdd, flags=0xf

2 (numeric), hash=0x6526b0fa, flags=0xf

3/2 (numeric), hash=0xf9828fbd, flags=0xf

-----

overall_coeff

4.5L0i (numeric), hash=0xa40a97e0, flags=0xf

=====

The latex output format is for LaTeX parsing in mathematical mode. It is rather similar to the
default format but provides some braces needed by LaTeX for delimiting boxes and also converts
some common objects to conventional LaTeX names. It is possible to give symbols a special
name for LaTeX output by supplying it as a second argument to the symbol constructor.

For example, the code snippet

{

symbol x("x", "\\circ");

ex e = lgamma(x).series(x==0,3);

cout << latex << e << endl;

}

will print

{(-\ln(\circ))}+{(-\gamma_E)} \circ+{(\frac{1}{12} \pi^{2})} \circ^{2}

+\mathcal{O}(\circ^{3})

Index dimensions are normally hidden in the output. To make them visible, use the index_

dimensions manipulator. The dimensions will be written in square brackets behind each index
value in the default and LaTeX output formats:

{

symbol x("x"), y("y");

varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4);

ex e = indexed(x, mu) * indexed(y, nu);
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cout << e << endl;

// prints ’x~mu*y~nu’

cout << index_dimensions << e << endl;

// prints ’x~mu[4]*y~nu[4]’

cout << no_index_dimensions << e << endl;

// prints ’x~mu*y~nu’

}

If you need any fancy special output format, e.g. for interfacing GiNaC with other algebra
systems or for producing code for different programming languages, you can always traverse the
expression tree yourself:

static void my_print(const ex & e)

{

if (is_a<function>(e))

cout << ex_to<function>(e).get_name();

else

cout << ex_to<basic>(e).class_name();

cout << "(";

size_t n = e.nops();

if (n)

for (size_t i=0; i<n; i++) {

my_print(e.op(i));

if (i != n-1)

cout << ",";

}

else

cout << e;

cout << ")";

}

int main()

{

my_print(pow(3, x) - 2 * sin(y / Pi)); cout << endl;

return 0;

}

This will produce

add(power(numeric(3),symbol(x)),mul(sin(mul(power(constant(Pi),numeric(-1)),

symbol(y))),numeric(-2)))

If you need an output format that makes it possible to accurately reconstruct an expression
by feeding the output to a suitable parser or object factory, you should consider storing the
expression in an archive object and reading the object properties from there. See the section
on archiving for more information.

5.15.2 Expression input

GiNaC provides no way to directly read an expression from a stream because you will usually
want the user to be able to enter something like ‘2*x+sin(y)’ and have the ‘x’ and ‘y’ correspond
to the symbols x and y you defined in your program and there is no way to specify the desired
symbols to the >> stream input operator.

Instead, GiNaC lets you read an expression from a stream or a string, specifying the mapping
between the input strings and symbols to be used:

{
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symbol x, y;

symtab table;

table["x"] = x;

table["y"] = y;

parser reader(table);

ex e = reader("2*x+sin(y)");

}

The input syntax is the same as that used by ginsh and the stream output operator <<. Matching
between the input strings and expressions is given by ‘table’. The ‘table’ in this example
instructs GiNaC to substitute any input substring “x” with symbol x. Likewise, the substring
“y” will be replaced with symbol y. It’s also possible to map input (sub)strings to arbitrary
expressions:

{

symbol x, y;

symtab table;

table["x"] = x+log(y)+1;

parser reader(table);

ex e = reader("5*x^3 - x^2");

// e = 5*(x+log(y)+1)^3 - (x+log(y)+1)^2

}

If no mapping is specified for a particular string GiNaC will create a symbol with corresponding
name. Later on you can obtain all parser generated symbols with get_syms() method:

{

parser reader;

ex e = reader("2*x+sin(y)");

symtab table = reader.get_syms();

symbol x = ex_to<symbol>(table["x"]);

symbol y = ex_to<symbol>(table["y"]);

}

Sometimes you might want to prevent GiNaC from inserting these extra symbols (for example,
you want treat an unexpected string in the input as an error).

{

symtab table;

table["x"] = symbol();

parser reader(table);

parser.strict = true;

ex e;

try {

e = reader("2*x+sin(y)");

} catch (parse_error& err) {

cerr << err.what() << endl;

// prints "unknown symbol "y" in the input"

}

}

With this parser, it’s also easy to implement interactive GiNaC programs. When running the
following program interactively, remember to send an EOF marker after the input, e.g. by
pressing Ctrl-D on an empty line:

#include <iostream>

#include <string>

#include <stdexcept>
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#include <ginac/ginac.h>

using namespace std;

using namespace GiNaC;

int main()

{

cout << "Enter an expression containing ’x’: " << flush;

parser reader;

try {

ex e = reader(cin);

symtab table = reader.get_syms();

symbol x = table.find("x") != table.end() ?

ex_to<symbol>(table["x"]) : symbol("x");

cout << "The derivative of " << e << " with respect to x is ";

cout << e.diff(x) << "." << endl;

} catch (exception &p) {

cerr << p.what() << endl;

}

}

5.15.3 Compiling expressions to C function pointers

Numerical evaluation of algebraic expressions is seamlessly integrated into GiNaC by help of
the CLN library. While CLN allows for very fast arbitrary precision numerics, which is more
than sufficient for most users, sometimes only the speed of built-in floating point numbers is fast
enough, e.g. for Monte Carlo integration. The only viable option then is the following: print the
expression in C syntax format, manually add necessary C code, compile that program and run is
as a separate application. This is not only cumbersome and involves a lot of manual intervention,
but it also separates the algebraic and the numerical evaluation into different execution stages.

GiNaC offers a couple of functions that help to avoid these inconveniences and problems. The
functions automatically perform the printing of a GiNaC expression and the subsequent compiling
of its associated C code. The created object code is then dynamically linked to the currently
running program. A function pointer to the C function that performs the numerical evaluation
is returned and can be used instantly. This all happens automatically, no user intervention is
needed.

The following example demonstrates the use of compile_ex:

// ...

symbol x("x");

ex myexpr = sin(x) / x;

FUNCP_1P fp;

compile_ex(myexpr, x, fp);

cout << fp(3.2) << endl;

// ...

The function compile_ex is called with the expression to be compiled and its only free variable
x. Upon successful completion the third parameter contains a valid function pointer to the
corresponding C code module. If called like in the last line only built-in double precision numerics
is involved.

The function pointer has to be defined in advance. GiNaC offers three function pointer types at
the moment:
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typedef double (*FUNCP_1P) (double);

typedef double (*FUNCP_2P) (double, double);

typedef void (*FUNCP_CUBA) (const int*, const double[], const int*, double[]);

FUNCP_2P allows for two variables in the expression. FUNCP_CUBA is the correct type to be used
with the CUBA library (http://www.feynarts.de/cuba) for numerical integrations. The details
for the parameters of FUNCP_CUBA are explained in the CUBA manual.

For every function pointer type there is a matching compile_ex available:

void compile_ex(const ex& expr, const symbol& sym, FUNCP_1P& fp,

const std::string filename = "");

void compile_ex(const ex& expr, const symbol& sym1, const symbol& sym2,

FUNCP_2P& fp, const std::string filename = "");

void compile_ex(const lst& exprs, const lst& syms, FUNCP_CUBA& fp,

const std::string filename = "");

When the last parameter filename is not supplied, compile_ex will choose a unique random
name for the intermediate source and object files it produces. On program termination these
files will be deleted. If one wishes to keep the C code and the object files, one can supply the
filename parameter. The intermediate files will use that filename and will not be deleted.

link_ex is a function that allows to dynamically link an existing object file and to make it
available via a function pointer. This is useful if you have already used compile_ex on an
expression and want to avoid the compilation step to be performed over and over again when
you restart your program. The precondition for this is of course, that you have chosen a filename
when you did call compile_ex. For every above mentioned function pointer type there exists a
corresponding link_ex function:

void link_ex(const std::string filename, FUNCP_1P& fp);

void link_ex(const std::string filename, FUNCP_2P& fp);

void link_ex(const std::string filename, FUNCP_CUBA& fp);

The complete filename (including the suffix .so) of the object file has to be supplied.

The function

void unlink_ex(const std::string filename);

is supplied for the rare cases when one wishes to close the dynamically linked object files directly
and have the intermediate files (only if filename has not been given) deleted. Normally one
doesn’t need this function, because all the clean-up will be done automatically upon (regular)
program termination.

All the described functions will throw an exception in case they cannot perform correctly, like for
example when writing the file or starting the compiler fails. Since internally the same printing
methods as described in section [csrc printing], page 80, are used, only functions and objects that
are available in standard C will compile successfully (that excludes polylogarithms for example at
the moment). Another precondition for success is, of course, that it must be possible to evaluate
the expression numerically. No free variables despite the ones supplied to compile_ex should
appear in the expression.

compile_ex uses the shell script ginac-excompiler to start the C compiler and produce the
object files. This shell script comes with GiNaC and will be installed together with GiNaC in
the configured $LIBEXECDIR (typically $PREFIX/libexec or $PREFIX/lib/ginac). You can also
export additional compiler flags via the $CXXFLAGS variable:

setenv("CXXFLAGS", "-O3 -fomit-frame-pointer -ffast-math", 1);

compile_ex(...);

http://www.feynarts.de/cuba
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5.15.4 Archiving

GiNaC allows creating archives of expressions which can be stored to or retrieved from files. To
create an archive, you declare an object of class archive and archive expressions in it, giving
each expression a unique name:

#include <fstream>

#include <ginac/ginac.h>

using namespace std;

using namespace GiNaC;

int main()

{

symbol x("x"), y("y"), z("z");

ex foo = sin(x + 2*y) + 3*z + 41;

ex bar = foo + 1;

archive a;

a.archive_ex(foo, "foo");

a.archive_ex(bar, "the second one");

// ...

The archive can then be written to a file:

// ...

ofstream out("foobar.gar", ios::binary);

out << a;

out.close();

// ...

The file foobar.gar contains all information that is needed to reconstruct the expressions foo
and bar. The flag ios::binary prevents locales setting of your OS tampers the archive file
structure.

The tool viewgar that comes with GiNaC can be used to view the contents of GiNaC archive
files:

$ viewgar foobar.gar

foo = 41+sin(x+2*y)+3*z

the second one = 42+sin(x+2*y)+3*z

The point of writing archive files is of course that they can later be read in again:

// ...

archive a2;

ifstream in("foobar.gar", ios::binary);

in >> a2;

// ...

And the stored expressions can be retrieved by their name:

// ...

lst syms = {x, y};

ex ex1 = a2.unarchive_ex(syms, "foo");

ex ex2 = a2.unarchive_ex(syms, "the second one");

cout << ex1 << endl; // prints "41+sin(x+2*y)+3*z"

cout << ex2 << endl; // prints "42+sin(x+2*y)+3*z"
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cout << ex1.subs(x == 2) << endl; // prints "41+sin(2+2*y)+3*z"

}

Note that you have to supply a list of the symbols which are to be inserted in the expressions.
Symbols in archives are stored by their name only and if you don’t specify which symbols you
have, unarchiving the expression will create new symbols with that name. E.g. if you hadn’t
included x in the syms list above, the ex1.subs(x == 2) statement would have had no effect
because the x in ex1 would have been a different symbol than the x which was defined at the
beginning of the program, although both would appear as ‘x’ when printed.

You can also use the information stored in an archive object to output expressions in a format
suitable for exact reconstruction. The archive and archive_node classes have a couple of
member functions that let you access the stored properties:

static void my_print2(const archive_node & n)

{

string class_name;

n.find_string("class", class_name);

cout << class_name << "(";

archive_node::propinfovector p;

n.get_properties(p);

size_t num = p.size();

for (size_t i=0; i<num; i++) {

const string &name = p[i].name;

if (name == "class")

continue;

cout << name << "=";

unsigned count = p[i].count;

if (count > 1)

cout << "{";

for (unsigned j=0; j<count; j++) {

switch (p[i].type) {

case archive_node::PTYPE_BOOL: {

bool x;

n.find_bool(name, x, j);

cout << (x ? "true" : "false");

break;

}

case archive_node::PTYPE_UNSIGNED: {

unsigned x;

n.find_unsigned(name, x, j);

cout << x;

break;

}

case archive_node::PTYPE_STRING: {

string x;

n.find_string(name, x, j);

cout << ’\"’ << x << ’\"’;

break;

}
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case archive_node::PTYPE_NODE: {

const archive_node &x = n.find_ex_node(name, j);

my_print2(x);

break;

}

}

if (j != count-1)

cout << ",";

}

if (count > 1)

cout << "}";

if (i != num-1)

cout << ",";

}

cout << ")";

}

int main()

{

ex e = pow(2, x) - y;

archive ar(e, "e");

my_print2(ar.get_top_node(0)); cout << endl;

return 0;

}

This will produce:

add(rest={power(basis=numeric(number="2"),exponent=symbol(name="x")),

symbol(name="y")},coeff={numeric(number="1"),numeric(number="-1")},

overall_coeff=numeric(number="0"))

Be warned, however, that the set of properties and their meaning for each class may change
between GiNaC versions.
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6 Extending GiNaC

By reading so far you should have gotten a fairly good understanding of GiNaC’s design
patterns. From here on you should start reading the sources. All we can do now is issue some
recommendations how to tackle GiNaC’s many loose ends in order to fulfill everybody’s dreams.
If you develop some useful extension please don’t hesitate to contact the GiNaC authors—they
will happily incorporate them into future versions.

6.1 What doesn’t belong into GiNaC

First of all, GiNaC’s name must be read literally. It is designed to be a library for use within
C++. The tiny ginsh accompanying GiNaC makes this even more clear: it doesn’t even attempt
to provide a language. There are no loops or conditional expressions in ginsh, it is merely a
window into the library for the programmer to test stuff (or to show off). Still, the design of a
complete CAS with a language of its own, graphical capabilities and all this on top of GiNaC is
possible and is without doubt a nice project for the future.

There are many built-in functions in GiNaC that do not know how to evaluate themselves
numerically to a precision declared at runtime (using Digits). Some may be evaluated at certain
points, but not generally. This ought to be fixed. However, doing numerical computations with
GiNaC’s quite abstract classes is doomed to be inefficient. For this purpose, the underlying
foundation classes provided by CLN are much better suited.

6.2 Symbolic functions

The easiest and most instructive way to start extending GiNaC is probably to create your own
symbolic functions. These are implemented with the help of two preprocessor macros:

DECLARE_FUNCTION_<n>P(<name>)

REGISTER_FUNCTION(<name>, <options>)

The DECLARE_FUNCTION macro will usually appear in a header file. It declares a C++ function
with the given ‘name’ that takes exactly ‘n’ parameters of type ex and returns a newly constructed
GiNaC function object that represents your function.

The REGISTER_FUNCTION macro implements the function. It must be passed the same ‘name’
as the respective DECLARE_FUNCTION macro, and a set of options that associate the symbolic
function with C++ functions you provide to implement the various methods such as evaluation,
derivative, series expansion etc. They also describe additional attributes the function might have,
such as symmetry and commutation properties, and a name for LaTeX output. Multiple options
are separated by the member access operator ‘.’ and can be given in an arbitrary order.

(By the way: in case you are worrying about all the macros above we can assure you that
functions are GiNaC’s most macro-intense classes. We have done our best to avoid macros where
we can.)

6.2.1 A minimal example

Here is an example for the implementation of a function with two arguments that is not further
evaluated:

DECLARE_FUNCTION_2P(myfcn)

REGISTER_FUNCTION(myfcn, dummy())

Any code that has seen the DECLARE_FUNCTION line can use myfcn() in algebraic expressions:

{

...

symbol x("x");
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ex e = 2*myfcn(42, 1+3*x) - x;

cout << e << endl;

// prints ’2*myfcn(42,1+3*x)-x’

...

}

The dummy() option in the REGISTER_FUNCTION line signifies "no options". A function with no
options specified merely acts as a kind of container for its arguments. It is a pure "dummy"
function with no associated logic (which is, however, sometimes perfectly sufficient).

Let’s now have a look at the implementation of GiNaC’s cosine function for an example of how
to make an "intelligent" function.

6.2.2 The cosine function

The GiNaC header file inifcns.h contains the line

DECLARE_FUNCTION_1P(cos)

which declares to all programs using GiNaC that there is a function ‘cos’ that takes one ex as
an argument. This is all they need to know to use this function in expressions.

The implementation of the cosine function is in inifcns_trans.cpp. Here is its REGISTER_

FUNCTION line:

REGISTER_FUNCTION(cos, eval_func(cos_eval).

evalf_func(cos_evalf).

derivative_func(cos_deriv).

latex_name("\\cos"));

There are four options defined for the cosine function. One of them (latex_name) gives the
function a proper name for LaTeX output; the other three indicate the C++ functions in which
the "brains" of the cosine function are defined.

The eval_func() option specifies the C++ function that implements the eval() method, GiNaC’s
anonymous evaluator. This function takes the same number of arguments as the associated
symbolic function (one in this case) and returns the (possibly transformed or in some way
simplified) symbolically evaluated function (See Section 4.2 [Automatic evaluation], page 10, for
a description of the automatic evaluation process). If no (further) evaluation is to take place,
the eval_func() function must return the original function with .hold(), to avoid a potential
infinite recursion. If your symbolic functions produce a segmentation fault or stack overflow
when using them in expressions, you are probably missing a .hold() somewhere.

The eval_func() function for the cosine looks something like this (actually, it doesn’t look like
this at all, but it should give you an idea what is going on):

static ex cos_eval(const ex & x)

{

if ("x is a multiple of 2*Pi")

return 1;

else if ("x is a multiple of Pi")

return -1;

else if ("x is a multiple of Pi/2")

return 0;

// more rules...

else if ("x has the form ’acos(y)’")

return y;

else if ("x has the form ’asin(y)’")

return sqrt(1-y^2);
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// more rules...

else

return cos(x).hold();

}

This function is called every time the cosine is used in a symbolic expression:

{

...

e = cos(Pi);

// this calls cos_eval(Pi), and inserts its return value into

// the actual expression

cout << e << endl;

// prints ’-1’

...

}

In this way, cos(4*Pi) automatically becomes 1, cos(asin(a+b)) becomes sqrt(1-(a+b)^2),
etc. If no reasonable symbolic transformation can be done, the unmodified function is returned
with .hold().

GiNaC doesn’t automatically transform cos(2) to ‘-0.416146...’. The user has to call evalf()
for that. This is implemented in a different function:

static ex cos_evalf(const ex & x)

{

if (is_a<numeric>(x))

return cos(ex_to<numeric>(x));

else

return cos(x).hold();

}

Since we are lazy we defer the problem of numeric evaluation to somebody else, in this case the
cos() function for numeric objects, which in turn hands it over to the cos() function in CLN.
The .hold() isn’t really needed here, but reminds us that the corresponding eval() function
would require it in this place.

Differentiation will surely turn up and so we need to tell cos what its first derivative is (higher
derivatives, .diff(x,3) for instance, are then handled automatically by basic::diff and
ex::diff):

static ex cos_deriv(const ex & x, unsigned diff_param)

{

return -sin(x);

}

The second parameter is obligatory but uninteresting at this point. It specifies which parameter
to differentiate in a partial derivative in case the function has more than one parameter, and its
main application is for correct handling of the chain rule.

Derivatives of some functions, for example abs() and Order(), could not be evaluated through
the chain rule. In such cases the full derivative may be specified as shown for Order():

static ex Order_expl_derivative(const ex & arg, const symbol & s)

{

return Order(arg.diff(s));

}

That is, we need to supply a procedure, which returns the expression of derivative with respect
to the variable s for the argument arg. This procedure need to be registered with the function
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through the option expl_derivative_func (see the next Subsection). In contrast, a partial
derivative, e.g. as was defined for cos() above, needs to be registered through the option
derivative_func.

An implementation of the series expansion is not needed for cos() as it doesn’t have any poles
and GiNaC can do Taylor expansion by itself (as long as it knows what the derivative of cos()
is). tan(), on the other hand, does have poles and may need to do Laurent expansion:

static ex tan_series(const ex & x, const relational & rel,

int order, unsigned options)

{

// Find the actual expansion point

const ex x_pt = x.subs(rel);

if ("x_pt is not an odd multiple of Pi/2")

throw do_taylor(); // tell function::series() to do Taylor expansion

// On a pole, expand sin()/cos()

return (sin(x)/cos(x)).series(rel, order+2, options);

}

The series() implementation of a function must return a pseries object, otherwise your code
will crash.

6.2.3 Function options

GiNaC functions understand several more options which are always specified as .option(params).
None of them are required, but you need to specify at least one option to REGISTER_FUNCTION().
There is a do-nothing option called dummy() which you can use to define functions without any
special options.

eval_func(<C++ function>)

evalf_func(<C++ function>)

derivative_func(<C++ function>)

expl_derivative_func(<C++ function>)

series_func(<C++ function>)

conjugate_func(<C++ function>)

These specify the C++ functions that implement symbolic evaluation, numeric evaluation, partial
derivatives, explicit derivative, and series expansion, respectively. They correspond to the GiNaC
methods eval(), evalf(), diff() and series().

The eval_func() function needs to use .hold() if no further automatic evaluation is desired or
possible.

If no series_func() is given, GiNaC defaults to simple Taylor expansion, which is correct if
there are no poles involved. If the function has poles in the complex plane, the series_func()
needs to check whether the expansion point is on a pole and fall back to Taylor expansion if it
isn’t. Otherwise, the pole usually needs to be regularized by some suitable transformation.

latex_name(const string & n)

specifies the LaTeX code that represents the name of the function in LaTeX output. The default
is to put the function name in an \mbox{}.

do_not_evalf_params()

This tells evalf() to not recursively evaluate the parameters of the function before calling the
evalf_func().

set_return_type(unsigned return_type, const return_type_t * return_type_tinfo)
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This allows you to explicitly specify the commutation properties of the function (See Section 4.15
[Non-commutative objects], page 39, for an explanation of (non)commutativity in GiNaC). For
example, with an object of type return_type_t created like

return_type_t my_type = make_return_type_t<matrix>();

you can use set_return_type(return_types::noncommutative, &my_type) to make GiNaC
treat your function like a matrix. By default, functions inherit the commutation properties of
their first argument. The utilized template function make_return_type_t<>()

template<typename T> inline return_type_t make_return_type_t(const unsigned rl = 0)

can also be called with an argument specifying the representation label of the non-commutative
function (see section on dirac gamma matrices for more details).

set_symmetry(const symmetry & s)

specifies the symmetry properties of the function with respect to its arguments. See Section 4.14
[Indexed objects], page 29, for an explanation of symmetry specifications. GiNaC will automati-
cally rearrange the arguments of symmetric functions into a canonical order.

Sometimes you may want to have finer control over how functions are displayed in the output.
For example, the abs() function prints itself as ‘abs(x)’ in the default output format, but as
‘|x|’ in LaTeX mode, and fabs(x) in C source output. This is achieved with the

print_func<C>(<C++ function>)

option which is explained in the next section.

6.2.4 Functions with a variable number of arguments

The DECLARE_FUNCTION and REGISTER_FUNCTION macros define functions with a fixed number
of arguments. Sometimes, though, you may need to have a function that accepts a variable
number of expressions. One way to accomplish this is to pass variable-length lists as arguments.
The Li() function uses this method for multiple polylogarithms.

It is also possible to define functions that accept a different number of parameters under the same
function name, such as the psi() function which can be called either as psi(z) (the digamma
function) or as psi(n, z) (polygamma functions). These are actually two different functions
in GiNaC that, however, have the same name. Defining such functions is not possible with the
macros but requires manually fiddling with GiNaC internals. If you are interested, please consult
the GiNaC source code for the psi() function (inifcns.h and inifcns_gamma.cpp).

6.3 GiNaC’s expression output system

GiNaC allows the output of expressions in a variety of different formats (see Section 5.15
[Input/output], page 80). This section will explain how expression output is implemented
internally, and how to define your own output formats or change the output format of built-in
algebraic objects. You will also want to read this section if you plan to write your own algebraic
classes or functions.

All the different output formats are represented by a hierarchy of classes rooted in the print_
context class, defined in the print.h header file:

print_dflt

the default output format

print_latex

output in LaTeX mathematical mode

print_tree

a dump of the internal expression structure (for debugging)
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print_csrc

the base class for C source output

print_csrc_float

C source output using the float type

print_csrc_double

C source output using the double type

print_csrc_cl_N

C source output using CLN types

The print_context base class provides two public data members:

class print_context

{

...

public:

std::ostream & s;

unsigned options;

};

s is a reference to the stream to output to, while options holds flags and modifiers. Currently,
there is only one flag defined: print_options::print_index_dimensions instructs the idx

class to print the index dimension which is normally hidden.

When you write something like std::cout << e, where e is an object of class ex, GiNaC will
construct an appropriate print_context object (of a class depending on the selected output
format), fill in the s and options members, and call

void ex::print(const print_context & c, unsigned level = 0) const;

which in turn forwards the call to the print() method of the top-level algebraic object contained
in the expression.

Unlike other methods, GiNaC classes don’t usually override their print() method to implement
expression output. Instead, the default implementation basic::print(c, level) performs a
run-time double dispatch to a function selected by the dynamic type of the object and the passed
print_context. To this end, GiNaC maintains a separate method table for each class, similar
to the virtual function table used for ordinary (single) virtual function dispatch.

The method table contains one slot for each possible print_context type, indexed by the
(internally assigned) serial number of the type. Slots may be empty, in which case GiNaC will
retry the method lookup with the print_context object’s parent class, possibly repeating the
process until it reaches the print_context base class. If there’s still no method defined, the
method table of the algebraic object’s parent class is consulted, and so on, until a matching
method is found (eventually it will reach the combination basic/print_context, which prints
the object’s class name enclosed in square brackets).

You can think of the print methods of all the different classes and output formats as being
arranged in a two-dimensional matrix with one axis listing the algebraic classes and the other
axis listing the print_context classes.

Subclasses of basic can, of course, also overload basic::print() to implement printing, but
then they won’t get any of the benefits of the double dispatch mechanism (such as the ability
for derived classes to inherit only certain print methods from its parent, or the replacement of
methods at run-time).

6.3.1 Print methods for classes

The method table for a class is set up either in the definition of the class, by passing the appropri-
ate print_func<C>() option to GINAC_IMPLEMENT_REGISTERED_CLASS_OPT() (See Section 6.5
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[Adding classes], page 103, for an example), or at run-time using set_print_func<T, C>(). The
latter can also be used to override existing methods dynamically.

The argument to print_func<C>() and set_print_func<T, C>() can be a member function of
the class (or one of its parent classes), a static member function, or an ordinary (global) C++
function. The C template parameter specifies the appropriate print_context type for which
the method should be invoked, while, in the case of set_print_func<>(), the T parameter
specifies the algebraic class (for print_func<>(), the class is the one being implemented by
GINAC_IMPLEMENT_REGISTERED_CLASS_OPT).

For print methods that are member functions, their first argument must be of a type convertible
to a const C &, and the second argument must be an unsigned.

For static members and global functions, the first argument must be of a type convertible to
a const T &, the second argument must be of a type convertible to a const C &, and the third
argument must be an unsigned. A global function will, of course, not have access to private and
protected members of T.

The unsigned argument of the print methods (and of ex::print() and basic::print()) is
used for proper parenthesizing of the output (and by print_tree for proper indentation). It can
be used for similar purposes if you write your own output formats.

The explanations given above may seem complicated, but in practice it’s really simple, as shown
in the following example. Suppose that we want to display exponents in LaTeX output not as
superscripts but with little upwards-pointing arrows. This can be achieved in the following way:

void my_print_power_as_latex(const power & p,

const print_latex & c,

unsigned level)

{

// get the precedence of the ’power’ class

unsigned power_prec = p.precedence();

// if the parent operator has the same or a higher precedence

// we need parentheses around the power

if (level >= power_prec)

c.s << ’(’;

// print the basis and exponent, each enclosed in braces, and

// separated by an uparrow

c.s << ’{’;

p.op(0).print(c, power_prec);

c.s << "}\\uparrow{";

p.op(1).print(c, power_prec);

c.s << ’}’;

// don’t forget the closing parenthesis

if (level >= power_prec)

c.s << ’)’;

}

int main()

{

// a sample expression

symbol x("x"), y("y");

ex e = -3*pow(x, 3)*pow(y, -2) + pow(x+y, 2) - 1;
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// switch to LaTeX mode

cout << latex;

// this prints "-1+{(y+x)}^{2}-3 \frac{x^{3}}{y^{2}}"

cout << e << endl;

// now we replace the method for the LaTeX output of powers with

// our own one

set_print_func<power, print_latex>(my_print_power_as_latex);

// this prints "-1+{{(y+x)}}\uparrow{2}-3 \frac{{x}\uparrow{3}}{{y}

// \uparrow{2}}"

cout << e << endl;

}

Some notes:

• The first argument of my_print_power_as_latex could also have been a const basic &,
the second one a const print_context &.

• The above code depends on mul objects converting their operands to power objects for the
purpose of printing.

• The output of products including negative powers as fractions is also controlled by the mul
class.

• The power/print_latex method provided by GiNaC prints square roots using \sqrt, but
the above code doesn’t.

It’s not possible to restore a method table entry to its previous or default value. Once you
have called set_print_func(), you can only override it with another call to set_print_func(),
but you can’t easily go back to the default behavior again (you can, of course, dig around in
the GiNaC sources, find the method that is installed at startup (power::do_print_latex in
this case), and set_print_func that one; that is, after you circumvent the C++ member access
control. . . ).

6.3.2 Print methods for functions

Symbolic functions employ a print method dispatch mechanism similar to the one used for classes.
The methods are specified with print_func<C>() function options. If you don’t specify any
special print methods, the function will be printed with its name (or LaTeX name, if supplied),
followed by a comma-separated list of arguments enclosed in parentheses.

For example, this is what GiNaC’s ‘abs()’ function is defined like:

static ex abs_eval(const ex & arg) { ... }

static ex abs_evalf(const ex & arg) { ... }

static void abs_print_latex(const ex & arg, const print_context & c)

{

c.s << "{|"; arg.print(c); c.s << "|}";

}

static void abs_print_csrc_float(const ex & arg, const print_context & c)

{

c.s << "fabs("; arg.print(c); c.s << ")";

}
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REGISTER_FUNCTION(abs, eval_func(abs_eval).

evalf_func(abs_evalf).

print_func<print_latex>(abs_print_latex).

print_func<print_csrc_float>(abs_print_csrc_float).

print_func<print_csrc_double>(abs_print_csrc_float));

This will display ‘abs(x)’ as ‘|x|’ in LaTeX mode and fabs(x) in non-CLN C source output,
but as abs(x) in all other formats.

There is currently no equivalent of set_print_func() for functions.

6.3.3 Adding new output formats

Creating a new output format involves subclassing print_context, which is somewhat similar
to adding a new algebraic class (see Section 6.5 [Adding classes], page 103). There is a macro
GINAC_DECLARE_PRINT_CONTEXT that needs to go into the class definition, and a corresponding
macro GINAC_IMPLEMENT_PRINT_CONTEXT that has to appear at global scope. Every print_

context class needs to provide a default constructor and a constructor from an std::ostream

and an unsigned options value.

Here is an example for a user-defined print_context class:

class print_myformat : public print_dflt

{

GINAC_DECLARE_PRINT_CONTEXT(print_myformat, print_dflt)

public:

print_myformat(std::ostream & os, unsigned opt = 0)

: print_dflt(os, opt) {}

};

print_myformat::print_myformat() : print_dflt(std::cout) {}

GINAC_IMPLEMENT_PRINT_CONTEXT(print_myformat, print_dflt)

That’s all there is to it. None of the actual expression output logic is implemented in this class.
It merely serves as a selector for choosing a particular format. The algorithms for printing
expressions in the new format are implemented as print methods, as described above.

print_myformat is a subclass of print_dflt, so it behaves exactly like GiNaC’s default output
format:

{

symbol x("x");

ex e = pow(x, 2) + 1;

// this prints "1+x^2"

cout << e << endl;

// this also prints "1+x^2"

e.print(print_myformat()); cout << endl;

...

}

To fill print_myformat with life, we need to supply appropriate print methods with set_print_

func(), like this:

// This prints powers with ’**’ instead of ’^’. See the LaTeX output

// example above for explanations.

void print_power_as_myformat(const power & p,
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const print_myformat & c,

unsigned level)

{

unsigned power_prec = p.precedence();

if (level >= power_prec)

c.s << ’(’;

p.op(0).print(c, power_prec);

c.s << "**";

p.op(1).print(c, power_prec);

if (level >= power_prec)

c.s << ’)’;

}

{

...

// install a new print method for power objects

set_print_func<power, print_myformat>(print_power_as_myformat);

// now this prints "1+x**2"

e.print(print_myformat()); cout << endl;

// but the default format is still "1+x^2"

cout << e << endl;

}

6.4 Structures

If you are doing some very specialized things with GiNaC, or if you just need some more organized
way to store data in your expressions instead of anonymous lists, you may want to implement
your own algebraic classes. (’algebraic class’ means any class directly or indirectly derived from
basic that can be used in GiNaC expressions).

GiNaC offers two ways of accomplishing this: either by using the structure<T> template class,
or by rolling your own class from scratch. This section will discuss the structure<T> template
which is easier to use but more limited, while the implementation of custom GiNaC classes is the
topic of the next section. However, you may want to read both sections because many common
concepts and member functions are shared by both concepts, and it will also allow you to decide
which approach is most suited to your needs.

The structure<T> template, defined in the GiNaC header file structure.h, wraps a type that
you supply (usually a C++ struct or class) into a GiNaC object that can be used in expressions.

6.4.1 Example: scalar products

Let’s suppose that we need a way to handle some kind of abstract scalar product of the form
‘<x|y>’ in expressions. Objects of the scalar product class have to store their left and right
operands, which can in turn be arbitrary expressions. Here is a possible way to represent such a
product in a C++ struct:

#include <iostream>

#include <ginac/ginac.h>

using namespace std;

using namespace GiNaC;

struct sprod_s {
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ex left, right;

sprod_s() {}

sprod_s(ex l, ex r) : left(l), right(r) {}

};

The default constructor is required. Now, to make a GiNaC class out of this data structure, we
need only one line:

typedef structure<sprod_s> sprod;

That’s it. This line constructs an algebraic class sprod which contains objects of type sprod_s.
We can now use sprod in expressions like any other GiNaC class:

...

symbol a("a"), b("b");

ex e = sprod(sprod_s(a, b));

...

Note the difference between sprod which is the algebraic class, and sprod_s which is the
unadorned C++ structure containing the left and right data members. As shown above, an
sprod can be constructed from an sprod_s object.

If you find the nested sprod(sprod_s()) constructor too unwieldy, you could define a little
wrapper function like this:

inline ex make_sprod(ex left, ex right)

{

return sprod(sprod_s(left, right));

}

The sprod_s object contained in sprod can be accessed with the GiNaC ex_to<>() function
followed by the -> operator or get_struct():

...

cout << ex_to<sprod>(e)->left << endl;

// -> a

cout << ex_to<sprod>(e).get_struct().right << endl;

// -> b

...

You only have read access to the members of sprod_s.

The type definition of sprod is enough to write your own algorithms that deal with scalar
products, for example:

ex swap_sprod(ex p)

{

if (is_a<sprod>(p)) {

const sprod_s & sp = ex_to<sprod>(p).get_struct();

return make_sprod(sp.right, sp.left);

} else

return p;

}

...

f = swap_sprod(e);

// f is now <b|a>

...
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6.4.2 Structure output

While the sprod type is useable it still leaves something to be desired, most notably proper
output:

...

cout << e << endl;

// -> [structure object]

...

By default, any structure types you define will be printed as ‘[structure object]’. To override
this you can either specialize the template’s print() member function, or specify print methods
with set_print_func<>(), as described in Section 6.3 [Printing], page 93. Unfortunately, it’s
not possible to supply class options like print_func<>() to structures, so for a self-contained
structure type you need to resort to overriding the print() function, which is also what we will
do here.

The member functions of GiNaC classes are described in more detail in the next section, but it
shouldn’t be hard to figure out what’s going on here:

void sprod::print(const print_context & c, unsigned level) const

{

// tree debug output handled by superclass

if (is_a<print_tree>(c))

inherited::print(c, level);

// get the contained sprod_s object

const sprod_s & sp = get_struct();

// print_context::s is a reference to an ostream

c.s << "<" << sp.left << "|" << sp.right << ">";

}

Now we can print expressions containing scalar products:

...

cout << e << endl;

// -> <a|b>

cout << swap_sprod(e) << endl;

// -> <b|a>

...

6.4.3 Comparing structures

The sprod class defined so far still has one important drawback: all scalar products are treated
as being equal because GiNaC doesn’t know how to compare objects of type sprod_s. This can
lead to some confusing and undesired behavior:

...

cout << make_sprod(a, b) - make_sprod(a*a, b*b) << endl;

// -> 0

cout << make_sprod(a, b) + make_sprod(a*a, b*b) << endl;

// -> 2*<a|b> or 2*<a^2|b^2> (which one is undefined)

...

To remedy this, we first need to define the operators == and < for objects of type sprod_s:

inline bool operator==(const sprod_s & lhs, const sprod_s & rhs)

{

return lhs.left.is_equal(rhs.left) && lhs.right.is_equal(rhs.right);
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}

inline bool operator<(const sprod_s & lhs, const sprod_s & rhs)

{

return lhs.left.compare(rhs.left) < 0

? true : lhs.right.compare(rhs.right) < 0;

}

The ordering established by the < operator doesn’t have to make any algebraic sense, but it
needs to be well defined. Note that we can’t use expressions like lhs.left == rhs.left or
lhs.left < rhs.left in the implementation of these operators because they would construct
GiNaC relational objects which in the case of < do not establish a well defined ordering (for
arbitrary expressions, GiNaC can’t decide which one is algebraically ’less’).

Next, we need to change our definition of the sprod type to let GiNaC know that an ordering
relation exists for the embedded objects:

typedef structure<sprod_s, compare_std_less> sprod;

sprod objects then behave as expected:

...

cout << make_sprod(a, b) - make_sprod(a*a, b*b) << endl;

// -> <a|b>-<a^2|b^2>

cout << make_sprod(a, b) + make_sprod(a*a, b*b) << endl;

// -> <a|b>+<a^2|b^2>

cout << make_sprod(a, b) - make_sprod(a, b) << endl;

// -> 0

cout << make_sprod(a, b) + make_sprod(a, b) << endl;

// -> 2*<a|b>

...

The compare_std_less policy parameter tells GiNaC to use the std::less and std::equal_to

functors to compare objects of type sprod_s. By default, these functors forward their work
to the standard < and == operators, which we have overloaded. Alternatively, we could have
specialized std::less and std::equal_to for class sprod_s.

GiNaC provides two other comparison policies for structure<T> objects: the default compare_
all_equal, and compare_bitwise which does a bit-wise comparison of the contained T objects.
This should be used with extreme care because it only works reliably with built-in integral types,
and it also compares any padding (filler bytes of undefined value) that the T class might have.

6.4.4 Subexpressions

Our scalar product class has two subexpressions: the left and right operands. It might be a good
idea to make them accessible via the standard nops() and op() methods:

size_t sprod::nops() const

{

return 2;

}

ex sprod::op(size_t i) const

{

switch (i) {

case 0:

return get_struct().left;

case 1:

return get_struct().right;
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default:

throw std::range_error("sprod::op(): no such operand");

}

}

Implementing nops() and op() for container types such as sprod has two other nice side effects:

• has() works as expected

• GiNaC generates better hash keys for the objects (the default implementation of calchash()
takes subexpressions into account)

There is a non-const variant of op() called let_op() that allows replacing subexpressions:

ex & sprod::let_op(size_t i)

{

// every non-const member function must call this

ensure_if_modifiable();

switch (i) {

case 0:

return get_struct().left;

case 1:

return get_struct().right;

default:

throw std::range_error("sprod::let_op(): no such operand");

}

}

Once we have provided let_op() we also get subs() and map() for free. In fact, every container
class that returns a non-null nops() value must either implement let_op() or provide custom
implementations of subs() and map().

In turn, the availability of map() enables the recursive behavior of a couple of other default
method implementations, in particular evalf(), evalm(), normal(), diff() and expand().
Although we probably want to provide our own version of expand() for scalar products that
turns expressions like ‘<a+b|c>’ into ‘<a|c>+<b|c>’. This is left as an exercise for the reader.

The structure<T> template defines many more member functions that you can override by
specialization to customize the behavior of your structures. You are referred to the next section
for a description of some of these (especially eval()). There is, however, one topic that shall be
addressed here, as it demonstrates one peculiarity of the structure<T> template: archiving.

6.4.5 Archiving structures

If you don’t know how the archiving of GiNaC objects is implemented, you should first read the
next section and then come back here. You’re back? Good.

To implement archiving for structures it is not enough to provide specializations for the archive()
member function and the unarchiving constructor (the unarchive() function has a default
implementation). You also need to provide a unique name (as a string literal) for each structure
type you define. This is because in GiNaC archives, the class of an object is stored as a string,
the class name.

By default, this class name (as returned by the class_name() member function) is ‘structure’
for all structure classes. This works as long as you have only defined one structure type, but
if you use two or more you need to provide a different name for each by specializing the get_

class_name() member function. Here is a sample implementation for enabling archiving of the
scalar product type defined above:

const char *sprod::get_class_name() { return "sprod"; }
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void sprod::archive(archive_node & n) const

{

inherited::archive(n);

n.add_ex("left", get_struct().left);

n.add_ex("right", get_struct().right);

}

sprod::structure(const archive_node & n, lst & sym_lst) : inherited(n, sym_lst)

{

n.find_ex("left", get_struct().left, sym_lst);

n.find_ex("right", get_struct().right, sym_lst);

}

Note that the unarchiving constructor is sprod::structure and not sprod::sprod, and that
we don’t need to supply an sprod::unarchive() function.

6.5 Adding classes

The structure<T> template provides an way to extend GiNaC with custom algebraic classes
that is easy to use but has its limitations, the most severe of which being that you can’t add
any new member functions to structures. To be able to do this, you need to write a new class
definition from scratch.

This section will explain how to implement new algebraic classes in GiNaC by giving the example
of a simple ’string’ class. After reading this section you will know how to properly declare a GiNaC
class and what the minimum required member functions are that you have to implement. We
only cover the implementation of a ’leaf’ class here (i.e. one that doesn’t contain subexpressions).
Creating a container class like, for example, a class representing tensor products is more involved
but this section should give you enough information so you can consult the source to GiNaC’s
predefined classes if you want to implement something more complicated.

6.5.1 Hierarchy of algebraic classes.

All algebraic classes (that is, all classes that can appear in expressions) in GiNaC are direct or
indirect subclasses of the class basic. So a basic * represents a generic pointer to an algebraic
class. Working with such pointers directly is cumbersome (think of memory management), hence
GiNaC wraps them into ex (see Section A.1 [Expressions are reference counted], page 111). To
make such wrapping possible every algebraic class has to implement several methods. Visitors (see
Section 5.6 [Visitors and tree traversal], page 61), printing, and (un)archiving (see Section 5.15
[Input/output], page 80) require helper methods too. But don’t worry, most of the work is
simplified by the following macros (defined in registrar.h):

• GINAC_DECLARE_REGISTERED_CLASS

• GINAC_IMPLEMENT_REGISTERED_CLASS

• GINAC_IMPLEMENT_REGISTERED_CLASS_OPT

The GINAC_DECLARE_REGISTERED_CLASS macro inserts declarations required for memory man-
agement, visitors, printing, and (un)archiving. It takes the name of the class and its direct
superclass as arguments. The GINAC_DECLARE_REGISTERED_CLASS should be the first line after
the opening brace of the class definition.

GINAC_IMPLEMENT_REGISTERED_CLASS takes the same arguments as GINAC_DECLARE_

REGISTERED_CLASS. It initializes certain static members of a class so that printing and
(un)archiving works. The GINAC_IMPLEMENT_REGISTERED_CLASS may appear anywhere else in
the source (at global scope, of course, not inside a function).
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GINAC_IMPLEMENT_REGISTERED_CLASS_OPT is a variant of GINAC_IMPLEMENT_REGISTERED_

CLASS. It allows specifying additional options, such as custom printing functions.

6.5.2 A minimalistic example

Now we will start implementing a new class mystring that allows placing character strings in
algebraic expressions (this is not very useful, but it’s just an example). This class will be a direct
subclass of basic. You can use this sample implementation as a starting point for your own
classes1.

The code snippets given here assume that you have included some header files as follows:

#include <iostream>

#include <string>

#include <stdexcept>

#include <ginac/ginac.h>

using namespace std;

using namespace GiNaC;

Now we can write down the class declaration. The class stores a C++ string and the user shall
be able to construct a mystring object from a string:

class mystring : public basic

{

GINAC_DECLARE_REGISTERED_CLASS(mystring, basic)

public:

mystring(const string & s);

private:

string str;

};

GINAC_IMPLEMENT_REGISTERED_CLASS(mystring, basic)

The GINAC_DECLARE_REGISTERED_CLASS macro insert declarations required for memory man-
agement, visitors, printing, and (un)archiving. GINAC_IMPLEMENT_REGISTERED_CLASS initializes
certain static members of a class so that printing and (un)archiving works.

Now there are three member functions we have to implement to get a working class:

• mystring(), the default constructor.

• int compare_same_type(const basic & other), which is used internally by GiNaC to
establish a canonical sort order for terms. It returns 0, +1 or -1, depending on the relative
order of this object and the other object. If it returns 0, the objects are considered
equal. Please notice: This has nothing to do with the (numeric) ordering relationship
expressed by <, >= etc (which cannot be defined for non-numeric classes). For example,
numeric(1).compare_same_type(numeric(2)) may return +1 even though 1 is clearly
smaller than 2. Every GiNaC class must provide a compare_same_type() function, even
those representing objects for which no reasonable algebraic ordering relationship can be
defined.

• And, of course, mystring(const string& s) which is the constructor we declared.

Let’s proceed step-by-step. The default constructor looks like this:

mystring::mystring() { }

1 The self-contained source for this example is included in GiNaC, see the doc/examples/mystring.cpp file.
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In the default constructor you should set all other member variables to reasonable default values
(we don’t need that here since our str member gets set to an empty string automatically).

Our compare_same_type() function uses a provided function to compare the string members:

int mystring::compare_same_type(const basic & other) const

{

const mystring &o = static_cast<const mystring &>(other);

int cmpval = str.compare(o.str);

if (cmpval == 0)

return 0;

else if (cmpval < 0)

return -1;

else

return 1;

}

Although this function takes a basic &, it will always be a reference to an object of exactly the
same class (objects of different classes are not comparable), so the cast is safe. If this function
returns 0, the two objects are considered equal (in the sense that A − B = 0), so you should
compare all relevant member variables.

Now the only thing missing is our constructor:

mystring::mystring(const string& s) : str(s) { }

No surprises here. We set the str member from the argument.

That’s it! We now have a minimal working GiNaC class that can store strings in algebraic
expressions. Let’s confirm that the RTTI works:

ex e = mystring("Hello, world!");

cout << is_a<mystring>(e) << endl;

// -> 1 (true)

cout << ex_to<basic>(e).class_name() << endl;

// -> mystring

Obviously it does. Let’s see what the expression e looks like:

cout << e << endl;

// -> [mystring object]

Hm, not exactly what we expect, but of course the mystring class doesn’t yet know how to print
itself. This can be done either by implementing the print() member function, or, preferably, by
specifying a print_func<>() class option. Let’s say that we want to print the string surrounded
by double quotes:

class mystring : public basic

{

...

protected:

void do_print(const print_context & c, unsigned level = 0) const;

...

};

void mystring::do_print(const print_context & c, unsigned level) const

{

// print_context::s is a reference to an ostream

c.s << ’\"’ << str << ’\"’;

}
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The level argument is only required for container classes to correctly parenthesize the output.

Now we need to tell GiNaC that mystring objects should use the do_print() member function
for printing themselves. For this, we replace the line

GINAC_IMPLEMENT_REGISTERED_CLASS(mystring, basic)

with

GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(mystring, basic,

print_func<print_context>(&mystring::do_print))

Let’s try again to print the expression:

cout << e << endl;

// -> "Hello, world!"

Much better. If we wanted to have mystring objects displayed in a different way depending
on the output format (default, LaTeX, etc.), we would have supplied multiple print_func<>()
options with different template parameters (print_dflt, print_latex, etc.), separated by dots.
This is similar to the way options are specified for symbolic functions. See Section 6.3 [Printing],
page 93, for a more in-depth description of the way expression output is implemented in GiNaC.

The mystring class can be used in arbitrary expressions:

e += mystring("GiNaC rulez");

cout << e << endl;

// -> "GiNaC rulez"+"Hello, world!"

(GiNaC’s automatic term reordering is in effect here), or even

e = pow(mystring("One string"), 2*sin(Pi-mystring("Another string")));

cout << e << endl;

// -> "One string"^(2*sin(-"Another string"+Pi))

Whether this makes sense is debatable but remember that this is only an example. At least it
allows you to implement your own symbolic algorithms for your objects.

Note that GiNaC’s algebraic rules remain unchanged:

e = mystring("Wow") * mystring("Wow");

cout << e << endl;

// -> "Wow"^2

e = pow(mystring("First")-mystring("Second"), 2);

cout << e.expand() << endl;

// -> -2*"First"*"Second"+"First"^2+"Second"^2

There’s no way to, for example, make GiNaC’s add class perform string concatenation. You
would have to implement this yourself.

6.5.3 Automatic evaluation

When dealing with objects that are just a little more complicated than the simple string objects
we have implemented, chances are that you will want to have some automatic simplifications or
canonicalizations performed on them. This is done in the evaluation member function eval().
Let’s say that we wanted all strings automatically converted to lowercase with non-alphabetic
characters stripped, and empty strings removed:

class mystring : public basic

{

...

public:

ex eval() const override;

...
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};

ex mystring::eval() const

{

string new_str;

for (size_t i=0; i<str.length(); i++) {

char c = str[i];

if (c >= ’A’ && c <= ’Z’)

new_str += tolower(c);

else if (c >= ’a’ && c <= ’z’)

new_str += c;

}

if (new_str.length() == 0)

return 0;

return mystring(new_str).hold();

}

The hold() member function sets a flag in the object that prevents further evaluation. Otherwise
we might end up in an endless loop. When you want to return the object unmodified, use return
this->hold();.

If our class had subobjects, we would have to evaluate them first (unless they are all of type ex,
which are automatically evaluated). We don’t have any subexpressions in the mystring class, so
we are not concerned with this.

Let’s confirm that it works:

ex e = mystring("Hello, world!") + mystring("!?#");

cout << e << endl;

// -> "helloworld"

e = mystring("Wow!") + mystring("WOW") + mystring(" W ** o ** W");

cout << e << endl;

// -> 3*"wow"

6.5.4 Optional member functions

We have implemented only a small set of member functions to make the class work in the GiNaC
framework. There are two functions that are not strictly required but will make operations with
objects of the class more efficient:

unsigned calchash() const override;

bool is_equal_same_type(const basic & other) const override;

The calchash() method returns an unsigned hash value for the object which will allow GiNaC
to compare and canonicalize expressions much more efficiently. You should consult the imple-
mentation of some of the built-in GiNaC classes for examples of hash functions. The default
implementation of calchash() calculates a hash value out of the tinfo_key of the class and all
subexpressions that are accessible via op().

is_equal_same_type() works like compare_same_type() but only tests for equality without
establishing an ordering relation, which is often faster. The default implementation of is_equal_
same_type() just calls compare_same_type() and tests its result for zero.

6.5.5 Other member functions

For a real algebraic class, there are probably some more functions that you might want to provide:
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bool info(unsigned inf) const override;

ex evalf() const override;

ex series(const relational & r, int order, unsigned options = 0) const override;

ex derivative(const symbol & s) const override;

If your class stores sub-expressions (see the scalar product example in the previous section) you
will probably want to override

size_t nops() const override;

ex op(size_t i) const override;

ex & let_op(size_t i) override;

ex subs(const lst & ls, const lst & lr, unsigned options = 0) const override;

ex map(map_function & f) const override;

let_op() is a variant of op() that allows write access. The default implementations of subs()
and map() use it, so you have to implement either let_op(), or subs() and map().

You can, of course, also add your own new member functions. Remember that the RTTI may be
used to get information about what kinds of objects you are dealing with (the position in the
class hierarchy) and that you can always extract the bare object from an ex by stripping the ex
off using the ex_to<mystring>(e) function when that should become a need.

That’s it. May the source be with you!

6.5.6 Upgrading extension classes from older version of GiNaC

GiNaC used to use a custom run time type information system (RTTI). It was removed from
GiNaC. Thus, one needs to rewrite constructors which set tinfo_key (which does not exist any
more). For example,

myclass::myclass() : inherited(&myclass::tinfo_static) {}

needs to be rewritten as

myclass::myclass() {}
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7 A Comparison With Other CAS

This chapter will give you some information on how GiNaC compares to other, traditional
Computer Algebra Systems, like Maple, Mathematica or Reduce, where it has advantages and
disadvantages over these systems.

7.1 Advantages

GiNaC has several advantages over traditional Computer Algebra Systems, like

• familiar language: all common CAS implement their own proprietary grammar which you
have to learn first (and maybe learn again when your vendor decides to ‘enhance’ it). With
GiNaC you can write your program in common C++, which is standardized.

• structured data types: you can build up structured data types using structs or classes
together with STL features instead of using unnamed lists of lists of lists.

• strongly typed: in CAS, you usually have only one kind of variables which can hold contents
of an arbitrary type. This 4GL like feature is nice for novice programmers, but dangerous.

• development tools: powerful development tools exist for C++, like fancy editors (e.g. with au-
tomatic indentation and syntax highlighting), debuggers, visualization tools, documentation
generators. . .

• modularization: C++ programs can easily be split into modules by separating interface and
implementation.

• price: GiNaC is distributed under the GNU Public License which means that it is free and
available with source code. And there are excellent C++-compilers for free, too.

• extendable: you can add your own classes to GiNaC, thus extending it on a very low level.
Compare this to a traditional CAS that you can usually only extend on a high level by
writing in the language defined by the parser. In particular, it turns out to be almost
impossible to fix bugs in a traditional system.

• multiple interfaces: Though real GiNaC programs have to be written in some editor, then be
compiled, linked and executed, there are more ways to work with the GiNaC engine. Many
people want to play with expressions interactively, as in traditional CASs: The tiny ginsh

that comes with the distribution exposes many, but not all, of GiNaC’s types to a command
line.

• seamless integration: it is somewhere between difficult and impossible to call CAS functions
from within a program written in C++ or any other programming language and vice versa.
With GiNaC, your symbolic routines are part of your program. You can easily call third
party libraries, e.g. for numerical evaluation or graphical interaction. All other approaches
are much more cumbersome: they range from simply ignoring the problem (i.e. Maple) to
providing a method for ‘embedding’ the system (i.e. Yacas).

• efficiency: often large parts of a program do not need symbolic calculations at all. Why use
large integers for loop variables or arbitrary precision arithmetics where int and double are
sufficient? For pure symbolic applications, GiNaC is comparable in speed with other CAS.

7.2 Disadvantages

Of course it also has some disadvantages:

• advanced features: GiNaC cannot compete with a program like Reduce which exists for more
than 30 years now or Maple which grows since 1981 by the work of dozens of programmers,
with respect to mathematical features. Integration, non-trivial simplifications, limits etc.
are missing in GiNaC (and are not planned for the near future).
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• portability: While the GiNaC library itself is designed to avoid any platform dependent
features (it should compile on any ANSI compliant C++ compiler), the currently used
version of the CLN library (fast large integer and arbitrary precision arithmetics) can only
by compiled without hassle on systems with the C++ compiler from the GNU Compiler
Collection (GCC).1 GiNaC uses recent language features like explicit constructors, mutable
members, RTTI, dynamic_casts and STL, so ANSI compliance is meant literally.

7.3 Why C++?

Why did we choose to implement GiNaC in C++ instead of Java or any other language? C++ is
not perfect: type checking is not strict (casting is possible), separation between interface and
implementation is not complete, object oriented design is not enforced. The main reason is the
often scolded feature of operator overloading in C++. While it may be true that operating on
classes with a + operator is rarely meaningful, it is perfectly suited for algebraic expressions.
Writing 3x+5y as 3*x+5*y instead of x.times(3).plus(y.times(5)) looks much more natural.
Furthermore, the main developers are more familiar with C++ than with any other programming
language.

1 This is because CLN uses PROVIDE/REQUIRE like macros to let the compiler gather all static initializations,
which works for GNU C++ only. Feel free to contact the authors in case you really believe that you need to use a
different compiler. We have occasionally used other compilers and may be able to give you advice.
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Appendix A Internal structures

A.1 Expressions are reference counted

In GiNaC, there is an intrusive reference-counting mechanism at work where the counter belongs
to the algebraic objects derived from class basic but is maintained by the smart pointer class
ptr, of which ex contains an instance. If you understood that, you can safely skip the rest of
this passage.

Expressions are extremely light-weight since internally they work like handles to the actual
representation. They really hold nothing more than a pointer to some other object. What this
means in practice is that whenever you create two ex and set the second equal to the first no
copying process is involved. Instead, the copying takes place as soon as you try to change the
second. Consider the simple sequence of code:

#include <iostream>

#include <ginac/ginac.h>

using namespace std;

using namespace GiNaC;

int main()

{

symbol x("x"), y("y"), z("z");

ex e1, e2;

e1 = sin(x + 2*y) + 3*z + 41;

e2 = e1; // e2 points to same object as e1

cout << e2 << endl; // prints sin(x+2*y)+3*z+41

e2 += 1; // e2 is copied into a new object

cout << e2 << endl; // prints sin(x+2*y)+3*z+42

}

The line e2 = e1; creates a second expression pointing to the object held already by e1. The
time involved for this operation is therefore constant, no matter how large e1 was. Actual
copying, however, must take place in the line e2 += 1; because e1 and e2 are not handles for the
same object any more. This concept is called copy-on-write semantics. It increases performance
considerably whenever one object occurs multiple times and represents a simple garbage collection
scheme because when an ex runs out of scope its destructor checks whether other expressions
handle the object it points to too and deletes the object from memory if that turns out not to
be the case. A slightly less trivial example of differentiation using the chain-rule should make
clear how powerful this can be:

{

symbol x("x"), y("y");

ex e1 = x + 3*y;

ex e2 = pow(e1, 3);

ex e3 = diff(sin(e2), x); // first derivative of sin(e2) by x

cout << e1 << endl // prints x+3*y

<< e2 << endl // prints (x+3*y)^3

<< e3 << endl; // prints 3*(x+3*y)^2*cos((x+3*y)^3)

}

Here, e1 will actually be referenced three times while e2 will be referenced two times. When
the power of an expression is built, that expression needs not be copied. Likewise, since the
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derivative of a power of an expression can be easily expressed in terms of that expression, no
copying of e1 is involved when e3 is constructed. So, when e3 is constructed it will print as
3*(x+3*y)^2*cos((x+3*y)^3) but the argument of cos() only holds a reference to e2 and the
factor in front is just 3*e1^2.

As a user of GiNaC, you cannot see this mechanism of copy-on-write semantics. When you
insert an expression into a second expression, the result behaves exactly as if the contents of
the first expression were inserted. But it may be useful to remember that this is not what
happens. Knowing this will enable you to write much more efficient code. If you still have an
uncertain feeling with copy-on-write semantics, we recommend you have a look at the C++-FAQ’s
(https://isocpp.org/faq) chapter on memory management. It covers this issue and presents
an implementation which is pretty close to the one in GiNaC.

A.2 Internal representation of products and sums

Although it should be completely transparent for the user of GiNaC a short discussion of this
topic helps to understand the sources and also explain performance to a large degree. Consider
the unexpanded symbolic expression 2d3 (4a+ 5b− 3) which could naively be represented by a
tree of linear containers for addition and multiplication, one container for exponentiation with
base and exponent and some atomic leaves of symbols and numbers in this fashion:

power

muld 3 mul

2

−3

4 a 5 b

add

mul

However, doing so results in a rather deeply nested tree which will quickly become inefficient to
manipulate. We can improve on this by representing the sum as a sequence of terms, each one
being a pair of a purely numeric multiplicative coefficient and its rest. In the same spirit we can
store the multiplication as a sequence of terms, each having a numeric exponent and a possibly
complicated base, the tree becomes much more flat:

1

2

1

add

b

5

a

4

−3

1

d

3

mul

The number 3 above the symbol d shows that mul objects are treated similarly where the
coefficients are interpreted as exponents now. Addition of sums of terms or multiplication of
products with numerical exponents can be coded to be very efficient with such a pair-wise

https://isocpp.org/faq
https://isocpp.org/faq
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representation. Internally, this handling is performed by most CAS in this way. It typically
speeds up manipulations by an order of magnitude. The overall multiplicative factor 2 and the
additive term -3 look somewhat out of place in this representation, however, since they are
still carrying a trivial exponent and multiplicative factor 1 respectively. Within GiNaC, this is
avoided by adding a field that carries an overall numeric coefficient. This results in the realistic
picture of internal representation for 2d3 (4a+ 5b− 3):

d

3 1

b

5

a

4 −3

2

mul

add

This also allows for a better handling of numeric radicals, since sqrt(2) can now be carried
along calculations. Now it should be clear, why both classes add and mul are derived from the
same abstract class: the data representation is the same, only the semantics differs. In the class
hierarchy, methods for polynomial expansion and the like are reimplemented for add and mul,
but the data structure is inherited from expairseq.
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Appendix B Package tools

If you are creating a software package that uses the GiNaC library, setting the correct com-
mand line options for the compiler and linker can be difficult. The pkg-config utility
makes this process easier. GiNaC supplies all necessary data in ginac.pc (installed into
/usr/local/lib/pkgconfig by default). To compile a simple program use1

g++ -o simple simple.cpp ‘pkg-config --cflags --libs ginac‘

This command line might expand to (for example):

g++ -o simple simple.cpp -lginac -lcln

Not only is the form using pkg-config easier to type, it will work on any system, no matter
how GiNaC was configured.

For packages configured using GNU automake, pkg-config also provides the PKG_CHECK_MODULES
macro to automate the process of checking for libraries

PKG_CHECK_MODULES(MYAPP, ginac >= MINIMUM_VERSION,

[ACTION-IF-FOUND],

[ACTION-IF-NOT-FOUND])

This macro:

• Determines the location of GiNaC using data from ginac.pc, which is either found in the
default pkg-config search path, or from the environment variable PKG_CONFIG_PATH.

• Tests the installed libraries to make sure that their version is later than MINIMUM-
VERSION.

• If the required version was found, sets the MYAPP_CFLAGS variable to the output of
pkg-config --cflags ginac and the MYAPP_LIBS variable to the output of pkg-config
--libs ginac, and calls ‘AC_SUBST()’ for these variables so they can be used in generated
makefiles, and then executes ACTION-IF-FOUND.

• If the required version was not found, executes ACTION-IF-NOT-FOUND.

B.1 Configuring a package that uses GiNaC

The directory where the GiNaC libraries are installed needs to be found by your system’s dynamic
linkers (both compile- and run-time ones). See the documentation of your system linker for
details. Also make sure that ginac.pc is in pkg-config’s search path, See Section “pkg-config”
in *manpages*.

The short summary below describes how to do this on a GNU/Linux system.

Suppose GiNaC is installed into the directory ‘PREFIX’. To tell the linkers where to find the
library one should

• edit /etc/ld.so.conf and run ldconfig. For example,

# echo PREFIX/lib >> /etc/ld.so.conf

# ldconfig

• or set the environment variables LD_LIBRARY_PATH and LD_RUN_PATH

$ export LD_LIBRARY_PATH=PREFIX/lib

$ export LD_RUN_PATH=PREFIX/lib

• or give a ‘-L’ and ‘--rpath’ flags when running configure, for instance:

$ LDFLAGS=’-Wl,-LPREFIX/lib -Wl,--rpath=PREFIX/lib’ ./configure

1 If GiNaC is installed into some non-standard directory prefix one should set the PKG CONFIG PATH environ-
ment variable to prefix/lib/pkgconfig for this to work.
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To tell pkg-config where the ginac.pc file is, set the PKG_CONFIG_PATH environment variable:

$ export PKG_CONFIG_PATH=PREFIX/lib/pkgconfig

Finally, run the configure script

$ ./configure

B.2 Example of a package using GiNaC

The following shows how to build a simple package using automake and the ‘PKG_CHECK_MODULES’
macro. The program used here is simple.cpp:

#include <iostream>

#include <ginac/ginac.h>

int main()

{

GiNaC::symbol x("x");

GiNaC::ex a = GiNaC::sin(x);

std::cout << "Derivative of " << a

<< " is " << a.diff(x) << std::endl;

return 0;

}

You should first read the introductory portions of the automake Manual, if you are not already
familiar with it.

Two files are needed, configure.ac, which is used to build the configure script:

dnl Process this file with autoreconf to produce a configure script.

AC_INIT([simple], 1.0.0, bogus@example.net)

AC_CONFIG_SRCDIR(simple.cpp)

AM_INIT_AUTOMAKE([foreign 1.8])

AC_PROG_CXX

AC_PROG_INSTALL

AC_LANG([C++])

PKG_CHECK_MODULES(SIMPLE, ginac >= 1.3.7)

AC_OUTPUT(Makefile)

The ‘PKG_CHECK_MODULES’ macro does the following: If a GiNaC version greater or equal than
1.3.7 is found, then it defines SIMPLE CFLAGS and SIMPLE LIBS. Otherwise, it dies with
the error message like

configure: error: Package requirements (ginac >= 1.3.7) were not met:

Requested ’ginac >= 1.3.7’ but version of GiNaC is 1.3.5

Consider adjusting the PKG_CONFIG_PATH environment variable if you

installed software in a non-standard prefix.

Alternatively, you may set the environment variables SIMPLE_CFLAGS

and SIMPLE_LIBS to avoid the need to call pkg-config.

See the pkg-config man page for more details.

And the Makefile.am, which will be used to build the Makefile.

## Process this file with automake to produce Makefile.in
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bin_PROGRAMS = simple

simple_SOURCES = simple.cpp

simple_CPPFLAGS = $(SIMPLE_CFLAGS)

simple_LDADD = $(SIMPLE_LIBS)

This Makefile.am, says that we are building a single executable, from a single source file
simple.cpp. Since every program we are building uses GiNaC we could have simply added
SIMPLE CFLAGS to CPPFLAGS and SIMPLE LIBS to LIBS. However, it is more flexible to
specify libraries and complier options on a per-program basis.

To try this example out, create a new directory and add the three files above to it.

Now execute the following command:

$ autoreconf -i

You now have a package that can be built in the normal fashion

$ ./configure

$ make

$ make install
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